水平反力調整工により断面力の改善を行った波形鋼板ウェブPC橋の設計・施工

豊	〇古村	正会員	東日本支社	ピーエス三菱	(株)
靖	遠藤	正会員	東日本支社	ピーエス三菱	(株)
洋大	山崎		東北支社	×高速道路(株)	東日

東日本高速道路(株) 東北支社 藤野 和雄

1. はじめに

本橋は、磐越自動車道の4車線化拡幅事業の一環として建設された PC4 径間連続波形鋼板ウェブ箱桁橋で ある。II 期線となる本橋は、道路線形、高架下の国道、JR などによる架設方法の制約により現在供用中の I 期線橋梁の鋼製アーチ橋から構造形式を変更して張出し架設による PC 波形鋼板ウェブ橋を採用した。本 橋は、固定支間長 1/2 に対する橋脚高さの比が通常の橋梁に比べて小さいラーメン構造で、上部工の不静定 力による橋脚の負担が大きい構造であった。また、コスト縮減を目的として既設アーチアバットをラーメン 橋脚基礎へ転用したことで地盤反力度の改善が課題となった。このため下部工断面力の改善を目的として、 2 枚壁式橋脚の採用と水平反力の調整を行った。また、柱頭部施工と張出し施工では、施工方法を合理化す ることで施工工程の短縮を図った。本報告では、西田橋の設計、施工の概要について報告する。

2. 工事概要

橋梁一般図を図-1,2に示す。
工事名:磐越自動車道 西田橋(PC上部工)工事
工事場所:福島県郡山市西田町地内
工期:平成18年8月23日~平成21年1月8日
構造形式:PC4径間連続波形鋼板ウェブ箱桁橋
長:263.2m
支間長:34.4+66.75+114.5+45.15m
平面線形:R=1000m
施工方法:張出し架設,固定支保工架設

図-2 橋梁一般図(側面図)

3. 設計および施工

3. 1 新しい主桁断面形状の採用

従来の波形鋼板ウェブ橋の断面は,波形鋼板下フランジの下側に下床版コンクリートを接合する構造であ る。これに対して本橋では,波形鋼板下フランジの上に下床版コンクリートを施工する構造とした。この桁 断面形状は,従来の断面形状と比べて,逆打ちコンクリートを打設する必要がなく,接合部付近のコンクリ ートの充てん性が向上する。さらに耐久性の留意点である鋼, コンクリートおよび水分が接する, いわゆるトリプルコンタクトポイントも箱桁内側に限定されることから, 点検が容易となり維持管理性に優れた断面形状である(図-3参照)。この桁断面形状は, ドイツの Altwifergrund 橋, 国内では滋賀県の杉谷川橋(下り線)¹⁾で実績がある。

3.2 合理化施工

3.2.1 柱頭部施工の合理化

従来の柱頭部の施工は,大型の鋼製ブラケットを支保工材として用いた 施工が一般的である。このため,従来工法は鋼製ブラケットの組立て解体 に要する工程が必要であった。本橋では,従来使用する鋼製ブラケット材

を使用せず,施工時荷重を波形鋼板で負担させる合理的な施工方法とした。その施工方法は,脚頭部直上を連続する延長 20mの波形鋼板を脚頭部上に先行架設し,波形鋼板下フランジの上にプレキャスト PC版を配置することで,足場兼支保工材として施工した(図-4,写真-1参照)。施工足場は,脚頭部施工用の枠組み足場を転用した。脚頭部直上の柱頭部横桁を貫通する鋼ウェブは,波形鋼板とせず補剛板で補剛したストレートウェブとして,脚頭部からのラーメン軸鉄筋を回避して配置した。柱頭部帯鉄筋は,鋼板に鉄筋貫通孔を設けて組み立てた。

図-3 下床版接合部

3.2.2 張出し施工の合理化

従来の張出し施工は,全コンクリート打設荷重を移動作 業車で支持する構造である。本橋の張出し施工では,波形 鋼板上下フランジを添接板で連続化させることにより,上 床版コンクリート打設荷重を移動作業車で,下床版コンク リート打設荷重を波形鋼板で荷重分担する構造とした

(図-5参照)。これにより,移動作業車に大規模な改造を 加えることなく,張出しブロック長を4.8mから6.4mにま で延長して張出しブロック数を低減した。

下床版コンクリート用型枠の支持方法は,波形鋼板先端 部に荷重支持梁を配置して,支持梁に下床版型枠を吊り下 げた。表-1に張出し施工のサイクル日数を示す。

写真-1 柱頭部の波形架設

表-1 張出し施工サイクル

張出し施工全体の工程は、従来方法と同程度のサイクル日数での施工が可能となり、ブロック数の低減分の施工工程を短縮した。

3.3 下部工断面力の改善

3.3.1 2枚壁式橋脚の採用

2 枚壁式橋脚は,橋軸方向の曲げ剛性を低下させることで,クリープ・乾燥収縮などによって橋脚に作用 する断面力を低減させることが可能である。水平力が作用した場合の橋脚の変形は,従来の橋脚と異なり 図-6に示すような変形となり,水平力に対して軸力変動を起こ

すことによって抵抗する構造である。表-2は、単柱式ラーメン 橋脚と2枚壁式ラーメン橋脚の橋脚基部および主桁隅角部の断面 力の比較結果である。2枚壁式橋脚は橋脚の軸力変動により断面 力を低減できるため、耐震性能が向上する。

図-6 橋脚の変形模式図

表-2 レベル1地震荷重の断面力比較(単荷重ケース)

	主桁のラー	主桁のラーメン隅角部 (曲げ照査断面)		橋脚(基部)		
	(曲げ照			2枚壁	式橋脚	
	単柱式橋脚	2枚壁式橋脚	毕性지備网	左側壁体	右側壁体	
M(kNm)	-19200	-8500	109500	38900	39100	
N(kN)	4900	5200	400	-12300	12100	

3.3.2 水平反力調整工

(1) 概要

本工法は、中央閉合後の上部工の収縮変形に よって下部工に作用する断面力相当分を中央閉 合前に強制的に逆載荷することで、完成系にお ける下部工断面力を改善するものである。載荷 荷重は、①水平反力とフーチングの地盤反力度 の関係、②水平反力と橋脚軸鉄筋応力の関係に 着目した線形骨組解析を行い、4100~6000kNの 範囲で載荷するものとした。載荷により局部応 力の発生が懸念されたため、図-7に示す立体 弾性 FEM 解析を実施し、部材の照査を行った。

(2) 載荷方法および施工管理方法

載荷方法は,載荷に伴う上下床版や波形鋼板の付加曲げの低減を図るため,上下床版に突起を配置して1断面あたり4点で載荷した(写真-2参照)。載荷構造は,予備4台を含む計8台の3000kN油圧ジャッキを配置して,上下床版それぞれ2台ずつのジャッキを1台の油圧ポンプで操作することで,上下床版それぞれの載荷荷重を独立させた。本載荷前に偏心載荷による桁の変形を把握するため,橋脚の弾性範囲内で①上床版のみ載荷,②下床版のみ載荷,③上下床版均等載荷の3ケースの載荷試験を実施した。

管理方法は、水平反力の載荷目的が下部、基礎工の断面

図-7 FEM 解析モデル

写真-2 水平反力載荷装置

カの改善であるため荷重管理とした。P2, P3 橋脚は載荷過程においてひび割れが 発生する。このため橋脚の非線形挙動を 把握するために橋脚部材を Mーφモデ ルとした非線形骨組解析を行った。さら に曲線橋である本橋の橋体全体の変位予 測のため,図-8に示す平面曲線を考慮 した立体弾性 FEM 解析を実施した。変 位測定は各支承部,P2,P3 柱頭部および 水平反力載荷断面における橋軸方向,直 角方向変位を変位計により計測した。鉛直変 位は,変形が卓越する載荷断面の変位をレベ ルにより測定した。橋脚軸鉄筋には橋脚施工 時より予め鉄筋ひずみゲージを設置して,鉄 筋のひずみを計測した。

(3)荷重-変位結果

図-9に水平反力載荷による P3 橋脚側の 載荷断面の荷重-変位結果を示す。実測変位 は,解析値に比べてやや小さい値を示した。 これは解析上の橋脚の弾性係数を設計基準強 度から設定しているため,実強度と設計値と の差によるものと推察される。非線形解析で

は2500kN 程度でひび割れ発生曲げモーメントに到達している。実施工では目視可能なひび割れが3000kN 載 荷時点で発生しており,解析値と概ね一致した。最終荷重は,出来形管理値を考慮して5500kN で載荷を終 了した。載荷割合は,出来形管理上の理由から上床版側3500kN,下床版側2000kN とした。

(4)ひび割れ

ひび割れは P2, P3 橋脚上下端の全基部に発 生し,ひび割れ幅の最大値は 0.3mm であった。 ひび割れの処置は,連続外ケーブル緊張後にひ び割れが閉じることを確認し,防水性に配慮し て浸透性防水材により止水処理を施した。

4. おわりに

本橋は本年6月末に竣工した(写真-3参照)。 近年,施工方法や構造の合理化により工程短縮, コスト縮減を図った事例が報告されている。本 橋は,既設基礎の転用を図り,PC波形鋼板ウェ ブ橋へ構造形式を変更したこと,施工方法の合

写真-3 完成写真

理化などにより建設コストの削減に寄与できた。本報告が同種橋梁建設に対して一助となれば幸いである。

参考文献

 1) 芦塚,高橋,當真,小林:第二名神高速道路 杉谷川橋(下り線)の設計・施工,プレストレストコンクリート, Vol.49, No3, 2007