ニッケル被覆炭素繊維シート陽極を用いた電気防食システムの長期有効性

オリエンタル白石(株)技術研究所 正会員 〇小林 俊秋

オリエンタル白石(株)技術研究所 正会員 中村 雅之

1. はじめに

電気防食は、塩害環境に対して電気化学的作用により高い防食効果が得られる点において、非常に優れ た防食工法と言えるが、他方電気化学的であるという面では、幾つかの問題も存在する。例えば、陽極反 応に伴って発生する酸性劣化が、長寿命化を阻む要素として指摘されている¹⁾。この酸性劣化は、陽極と電 解質の接触抵抗を増大させると共に、電位上昇による塩素ガス発生の原因となっている。実用化の目途と されている 20 年間の耐久性を確認するためには、通電実験により、陽極システムの通電性能を実証するこ とが要求される。これらの通電性能を評価するには、実験セルを用いた促進通電実験²⁾により行なわれる が、この方法では電解質に水溶液を使用することにより大電流を流せるため、試験期間が短く、多くの陽 極材料の通電試験に用いられている。促進通電実験のセルは、試験水溶液を入れた容器に陽極と陰極を一 定間隔で配置して構成される。実験セルでは、陽極反応に伴って発生した酸は、陽極から陰極へ電気泳動 して、陰極で発生した水酸化物イオンによって中和される。実稼動状態におけるコンクリートと実験セル における試験水溶液で電気泳動速度が異なることによる陽極近傍の酸性化分布の違いが、陽極性能に影響 を与えることは必然である。このような背景から、実稼動状態での試験やそれに極めて近い状態、環境で の試験による実証が重要となる。

筆者らは、電磁波シールド材料であるニッケル被覆炭素繊維シート(以下,Ni/CFS と記す)の低コスト 性、機械特性、電気特性などの性質に着目して、RC および PC 構造物の電気防食の陽極に使用するシステ ムの開発・実用化を推進してきた^{3),4),5),6),7)}。実稼動状態で用いる陽極ユニットを組み込んだ小型 RC 用 供試体を製作し、実稼動状態に近い状態で電気化学的測定を行なうことができれば、Ni/CFS 陽極の寿命を より詳細に評価することができる。本稿では、陽極ユニットを組込んだ小型 RC 供試体の通電実験による 実験結果を報告する。

2. 小型RC通電実験

実稼動状態における陽極ユニットの寿命を把握するため,陽極ユニットを組み込んだ小型 RC 供試体における長時間連続通電実験を実施した。図-1に示すように、小型 RC 供試体の寸法は、200×600×100mm、 鉄筋は、SR235Φ13を用いた。鉄筋は、長辺方向に2本平行に配置し、鉄筋の片側端面に PVC ケーブルを 半田付けして通電点とした。コンクリート配合を表-1に示す。養生は、打設後10日間は、型枠のまま封

減養生し、10日後に脱型、気中養生を120日間行い、 その後陽極ユニットの設置を行った。陽極ユニットの大 きさは、幅136mm×高さ25mm×奥行き500mmであり、 実用型と同じものである。写真-1に示す陽極ユニット 内には高吸水性高分子と強アルカリ水溶液を混合して 調整したゲル状の高分子電解質、Ni/CFS 陽極を配置し て、コンクリート表面に定着した。使用した陽極ユニッ トの構成材料および成分を表-2に示す。

写真-1 陽極ユニットの構造

表-1 コンクリート配合

	-						
水セ	細骨 材率 (%)	単位量(kg/m ³)					
メン ト比 (%)		水	メト	細骨 材	粗骨 材	混和 剤	NaC1
48	46	160	333	882	1043	2.0	12.4

表-2 陽極ユニットの構成材料および成分

材 料	特徵,成分
ニッケル被覆炭 素繊維シート	記号:Ni/CFS、原料: PAN系、Ni被膜 厚:0.25μm、体積抵抗率:7.5×10 ⁻⁵ Ω・cm
水酸化リチウム	化学式:LiOH、分子量:23.95g/mol、白色無臭の 結晶、溶解性:水に可溶pH:アルカリ性
保護カバー	基材のFRPはガラス繊維とビニルエステル樹脂 の複合材料,厚さ2.0mm
高吸水性高分子	化学名:ポリアクリル酸塩系水溶性増粘剤,性 状=白色粉末,比重=真比重1.5~1.7

図-1 陽極ユニットを組込んだ小型 RC 供試体

陽極ユニットを用いて、実績から陽極表面積当たり50mA/m²を基準とし、3倍、10倍に変化させた電流で 通電し、長時間特性を計測した。バックフィルの緩衝機能は、使用されるLiOH水溶液濃度とバックフィル のイオン伝導性に主に依存しているので、バックフィルのLiOH水溶液濃度を1、5、10%と変えて実験し、 緩衝剤としての実用特性を満たす濃度限界を選び出した。陽極ユニットの性能は、陽・陰極電位やシステ ム電圧で評価できる。電圧計(入力抵抗:10¹¹Ω)を用いて、電位特性を測定した。照合電極には銀塩化 銀電極を用いた。本項文中の電位は銀塩化銀電極を基準として表示した。以下銀塩化銀電極をAg/AgClと 記す。オン電位は、通電時電位、インスタントオフ電位は、通電を停止して1秒以内の電位を測定した。以 下オン電位をON電位、インスタントオフ電位をIO電位と記す。陽極ユニットの製作を写真-2、陽極ユニ ットの組み込みを写真-3、小型RC供試体を写真-4に示す。

写真-3 陽極ユニットの組み込み

写真-4 小型 RC 供試体

〔論文〕

3. 結果および考察

3.1 陽·陰極10電位の時間変化

バックフィルのLiOH濃度に対する両極のIO電位の時間変化を図-2,3,4に示す。同図から,バック フィルのLiOH濃度5,10%は通電320日においても,低い陽極IO電位を示すが,バックフィルのLiOH濃度 1%において,陽極IO電位は,電流密度150mA/m²の場合で100日,電流密度500mA/m²の場合で30日を越え ると急激に増大した。これはバックフィルのLiOH濃度1%の場合,低いアルカリ性状態となり,通電時間 および電流密度を増大すると通電性能としての機能に必要なイオン伝導性を保ち続けることができないた めと考えられる。一方,バックフィルのLiOH濃度を変えても陰極IO電位は余り変化せず,電流密度で比較 すると電流密度に対する陰極IO電位の変化が対応しているので,電流密度が大きいほど,陰極IO電位変化 に有効であると考えられる。また,図-5の環境温度変化と比較すると温度上昇に対する陽極IO電位の減 少と陰極IO電位の減少が対応している。例えば、図-5の通電材齢180日の温度低下と、図-2の陽極 IO電位の上昇および陰極IO電位の低下が対応している。これは,陽極システムの作動温度が低下すれば固 体電解質の電気抵抗は上昇し、分極による抵抗も増大するためと考えられる。

図-3 陽・陰極 10 電位の時間変化(150mA/m²)

3. 2 陽・陰極10電位および電圧の環境温度依存性

陽極IO電位の温度変化に対する依存性を確認するために、図-6,7,8に異なるLiOH濃度のバックフィルで製作した陽極ユニットの長期通電による陽極IO電位と環境温度の関係を示す。

図-6,7より,電流密度50,150mA/m²の場合,バックフィルのLiOH濃度を低くするに従って,また 電流密度を高くするに従って,陽極IO電位の環境温度依存性を示す近似直線が高電位側へシフトするとと もに高角度側へシフトするなどの特徴が見られる。これは、温度依存性の増加を示している。陽極IO電位 は、固体電解質の電気抵抗および陽極の分極抵抗により決まる。また、バックフィルのLiOH濃度を低くす るに従って、イオン伝導性は低下する。このために低電流の場合は、分極抵抗と固体電解質のイオン伝導 の抵抗が、電流が大きくなるとイオン伝導の抵抗が影響するためバックフィルのLiOH濃度を低くするに従 って、また電流密度を高くするに従って、陽極IO電位は、環境温度により影響されると考えられる。図-8より、500mA/m²の高電流密度条件では、このような近似直線の傾向は消失し、陽極IO電位の環境温度依 存性を示す相関性も低下した。

図-6 陽極 10 電位と環境温度 (50mA/m²)

図-9,10,11に陰極IO電位と環境温度の関係を示す。図-9より,電流密度50mA/m²の場合,バ ックフィルのLiOH濃度を変えても陰極IO電位の環境温度依存性は余り変化せず,10%LiOHで低電位側へ シフトする特徴が見られる。また図-10,11より,電流密度150,500mA/m²の場合,陰極IO電位は特 に環境温度に影響のないことが判った。これは、陰極では、コンクリートの低イオン伝導率に起因するIR ロスが増大するために安定した電位測定ができないためではないかと考えられる。図-12,13,14 に電圧と環境温度の関係を示す。同図より,バックフィルのLiOH濃度1%の場合,陽極IO電位と同じく, 電圧の環境温度依存性を示す近似直が高電位側へシフトするとともに高角度側へシフトするなどの特徴が 見られる。これは、温度依存性の増加を示している。しかし、バックフィルのLiOH濃度5,10%の場合, バックフィルのLiOH濃度の高い10%の方が5%に比べて,電圧環境温度依存性を示す近似直線が高電位側 ヘシフトするとともに高角度側へシフトしており,陽極IO電位と異なる傾向を示している。図-15に陽 極ON電位と環境温度の関係を示す。図-15より、バックフィルのLiOH濃度5,10%の場合,陽極ON電 位の環境温度依存性を示す近似直線が,電圧と同じ傾向を示している。

図-12 電圧と環境温度(50mA/m²)

図-11 陰極 10 電位と環境温度(500mA/m²)

4.結論

本実験の測定により、以下の知見が得られた。

- (1) 小型RC供試体の促進通電実験より,電流密度50,150,500mA/m²の場合,バックフィルのLiOH濃度 5,10%は通電320日においても,低い陽極IO電位を示した。
- (2) 小型RC供試体の促進通電実験より、電流密度50,150mA/m²の場合、バックフィルのLiOH濃度を低くするに従って、また電流密度を高くするに従って、陽極IO電位の環境温度依存性を示す近似曲線が高電位側へシフトするとともに高角度側へシフトするなどの特徴が見られた。
- (3) 10倍の促進電流を流した500mA/m²の通電実験では、LiOH水溶液濃度10%、5%において、陽極シス テムは330日以上、実稼動状態を維持していることがわかった。

参考文献

 五賓光基ほか:北陸地区における施工後15年を経た各種電気防食工事の評価報告、コンクリート工学年次 論文報告集, Vol.27, No.1, pp.1867-1872, 2005.6

2)NACE Standard TM0294-94 Item No.21225

3)小林俊秋,呉承寧:ニッケル被覆炭素繊維シートの電気防食における通電性能に関する研究,コンクリート工学年次論文報告集, Vol.27, No.1, pp.1534-1536 (2005)

4)小林俊秋, 堀越直樹, 中村雅之, 呉承寧: セメント系モルタル中におけるニッケル被覆炭素繊維シート陽 極を用いた電気防食の通電性能に関する研究, コンクリート工学年次論文報告集, Vol.28, No.1, pp.1697-1702 (2006)

5)小林俊秋,中村雅之,堀越直樹,井川一弘:RC大型実験供試体に設置した電気防食に用いるニッケル被 覆炭素繊維シート陽極,コンクリート工学年次論文報告集,Vol.29,No.1(2007)

6)中村雅之,小林俊秋,井川一弘,篠田 良央:ニッケル被覆炭素繊維シートを用いた電気防食工法の開発, コンクリート工学年次論文報告集, Vol.28, No.1, pp.1573-1542 (2005)

7)小林俊秋,中村雅之,星野雅彦,堀越直樹:ニッケル被覆炭素繊維シートを用いた電気防食の維持管理, コンクリート構造物の補修,補強,アップグレード論文報告集,6巻,pp.37-42 (2006)