アンボンドPC圧着プレキャストコンクリート造実大2層骨組の施工実験及び水平載荷実験 (その8 床スラブの面内せん断力伝達確認実験)

東北大字	正会員	〇前田	匞樹

- (株)錢高組 五十嵐 治人
- (株)日建設計 朝賀 亮太

1. はじめに

同題その1で報告したように本研究で対象とする事務所ビルは、平面中央に大スパン架構を設け、外周架構に耐震要素を配置する構造計画としている。これを実現するには、中架構に作用する地震力を床スラブの面内せん断力で、外周架構に確実に伝達する必要がある。そこで水平載荷 実験を行った実大架構試験体を用い、床スラブの面内せん断力伝達性能実験を実施した。床スラ

ブは、施工性・解体性を考慮してフルPCaスラ ブ版を採用しており、梁とはシアコッターで接 続している。本実験では、

- a) 複数の床スラブ版と複数のコッターを有する 架構でも,既往の要素実験¹⁾で確認したコッ ターの耐力や破壊性状が同様であるかを把握 すること,
- b) 本床スラブシステムによるフレーム間のせん 断力伝達機構を把握すること,を目的とした。

2. 試験体と載荷方法

写真1に試験体全景,図1に試験体2階床伏図 を示す。水平載荷を終了した試験体の2層部分 を撤去(解体実験)した。床スラブ-梁接合部の シアコッターの概略図を図2に示す。中央フレー ムでは,既往の研究で開発した梁直交方向に隙 間を設けてスラブ変位を拘束しない機構¹⁾を有す るコッターを採用し,その破壊性状を検討の対 象とした。東西フレームのコッターは,隙間を 設けず床スラブを固定した。

実験は、以下の2ケースを行った。

- (1) 実験1:図1(左)に示すように床スラブ10枚 (コッター8個)を設置した状態で、アクチュ エーターの載荷能力の限界、または、フレーム が塑性化するまで、面内せん断力が伝達され、 大きな損傷が生じないことを確認する。
- (2) 実験2:図1(右)のように両外側のPCaスラブ版4枚を撤去し、スラブ6枚(コッター4個)の状態でコッター接合部を破壊させた。 載荷は次の手順で行った。
- 中央フレーム脚部のスタブの PC 鋼棒を全て 撤去し、スタブ下部面が滑動し、中央フレー ムが層せん断力を負担しないようにする。
- ② 水平載荷用アクチュエータを用いて中央フレ ームのみを載荷し、東西フレームにはコッタ

写真1 試験体全景(実験1)

図2 コッター概略図

ーと床スラブを介してのみせん断力が伝達されるようにした。

加力スケジュールは正負対称の交番繰り返し漸増載荷として、以下の通りとした。

- (1) 実験1:200kN ずつ増加する荷重制御とし、制御変形角が前回ピーク時の1.5 倍に達したらその時 点で除荷に切り替えた。梁端の離間が確認できた時点で載荷を終了した。これは、フレームの非線 形挙動を極力起こさせないためである。
- (2) 実験2:100kN ずつ増加する荷重制御とした。実験1と同様の判断で変形制御に移行した。最終的 にコッターが破壊するまで載荷した。

制御変形角 R_{SL} の算定方法を式(1)に示す。各記号は図1に示す。 δ_{C} 、 δ_{E} 、 δ_{w} は各々中央、東、西フレームの頂部変位である。

$$R_{SL} = \left(2\delta_C - \delta_E - \delta_W\right) / \left(2L_{SL}\right) \tag{1}$$

3. 実験結果

3.1 荷重-変形関係

全体荷重一制御変形角関係を図3に示す。実験 1では800kNまで荷重制御とし、その後1ループ を変位制御とした。その途中で梁端に離間が生じ たため、そのループで載荷を終了した。実験2で は400kNまで荷重制御とし、その後変位制御とし た。変位制御とした2ループ目正加力時にコッタ ーが全て破壊し、載荷を終了した。全体荷重-各 フレーム変形図を図4に示す。実験1、実験2と も東西フレームはほぼ同様の挙動を示しており、 捩れのない良好な載荷履歴を示した。また、PCa 床スラブ版にはコッター脇を除いて、最終状態至 るまでひび割れ等は観察されなかった。

3.2 各フレームの負担せん断力の分離

上記の結果から,各フレームの分担せん断力を 算出した。算出に当たっては,以下の仮定を用い た。

- ・中央フレームは、スタブ下面の摩擦力のみ負担 するため、完全弾塑性モデルとした。図5に各 サイクルにおけるスタブ変位0時荷重値を示す。 これをみると、経験最大荷重によらず、スタブ 変位0時の荷重はほぼ同様の値であり、繰り返 しによる滑動荷重(摩擦力)の変化はないと判 断した。
- ・図6に実験1での初期の全体荷重-各フレーム 変位関係を示す。これによると、3フレームと もほぼ同様の挙動を示していることが分かる。 このため、スタブが滑り出すまでは3フレーム は各々荷重を 1/3 ずつ分担すると判断した。ま た、中央フレームの完全弾塑性モデルの初期、 除荷剛性は図6の剛性の1/3とした。

上記の仮定に基づいて各フレームにせん断力を 分離した結果を図7に示す。これによると実験1, 実験2とも東西フレームは非線形弾性に近い挙動 を示し,水平載荷実験で部材端部に離間が生じな い場合と同様の結果となった。

3.3 スラブ面内せん断カー接合部変位関係

3.2 節により,アクチュエーターの荷重から中フ レームの負担せん断力を補正し,東西の床スラブ が均等にせん断力を負担すると仮定してスラブ面

内せん断力を求め、中央フレームの床スラブ -梁接合部での変位との関係を検討した。

(1) 実験1

図 8 に、スラブ面内せん断力とスラブ-梁 接合部での変位(以下、スラブー梁間変位) の関係を示す。図 8 に示すように、面内せん 断力は 388kN(コッター1個あたり 48.5kN) まで載荷した時点で、架構の塑性化が進展し たため載荷を終了したが、スラブの面内せん 断力-変形関係に大きな剛性低下はなく、ス ラブー梁間のずれ変形は 2mm 程度以下であ った。また、載荷終了時には、8 個のシアコ ッターのうち、コッターDには写真 2(a)に示 すようなコッター筋を結ぶひび割れと、周辺 のスラブ隅角部にひび割れが生じたが、その 他のコッターや PCa 床スラブ版に大きな損 傷は見られなかった。

(2) 実験2

図9に床スラブ6枚時の実験結果における スラブ面内せん断力-スラブ-梁間変位関係 を示す。最終破壊は、筆者らが行った既往の スラブ接合部要素実験¹⁾と同様,写真 2(b)に 示すようにシアコッター部分のせん断破壊と なり、床スラブにはほとんど損傷は見られな かった。図9に示すように、最大耐力は 241kN で, コッター1 個当たり平均耐力は 60.3kN と、後述するコッター筋のせん断耐力 Q_vに対して 1.15 倍であった。既往のスラブ接合 部要素実験結果における 1.8 倍と比較すると余 裕度が低い結果であるが、これは、同一梁上に 複数個のシアコッターを設ける場合,同時に降 伏し,耐力を発揮するのではなく,順次破壊が 進行するため、シアコッター1 個あたりの平均 耐力が小さくなったためと考えられる。

4. 床スラブ接合部の耐力と復元力特性の評価

筆者らは、本研究の対象のシアコッターの要 素実験結果の接合部耐力について、文献 2)で検 討した。そこでの評価式に一部修正を加えて、 実大架構実験に適用して比較し、さらに、コッ ターを含むスラブの復元力特性の骨格曲線を、 (1)コッターのひび割れ点、(2)コッターの最大耐 力点の2特性点を持つ3折れ線により表現する。 なお、要素実験、実大架構実験ともに、接合部 コッター周辺を除く、床スラブ版には、ほとん どひび割れ等の損傷はなく、せん断変形の大部 分はコッターのひび割れ強度

ひび割れ強度の算定では、図 10(a)に示すコッ ター筋を結ぶ断面と底面でのひび割れ面と、図 10(b)のコッター全底面をひび割れ面と設定した ひび割れ強度、それぞれ $_{c}Q_{c1}$ 及び $_{c2}c_{2}$ を評価し

(a) 実験「終」時 (b) 実験 2 終了 写真 2 コッターD の破壊状況

(4)

た。

ここで、 σ_T はコンクリートの引張強度で $0.33\sqrt{\sigma_B}$, σ_B は圧縮強度である。

(2)コッターの最大耐力

最大耐力は,「耐震改修設計指針」³⁾のあと施工ア ンカーのせん断耐力式を用いることとした。

 $Q_{v} = 0.7\sigma_{v} \cdot a_{e}$

以上により求めた耐力の計算値と実験値の比較を 表 1 に示す。ひび割れ強度は、全底面をひび割れ面 とした $_{c}Q_{c2}$ の方が小さく、実験1の最大耐力はこの 計算値 33.7kN を上回る。また、コッターが破壊した 実験2の最大耐力 60.3kN は、せん断耐力の計算値 52.5kN を上回り、いずれも安全側に評価することが できる。

図 11 に接合部要素実験によるコッター接合部の荷 重-変位関係¹⁾,および上記の計算値による復元力特 性の骨格曲線モデルを示す。実験値モデルの第 1 折

れ点は、コッターひび割れ点(\diamond), 第 2 折れ点は、最大耐力点(\circ)とした。 計算値の第 1 折れ点、第 2 折れ点の 変位については、接合部要素実験結 C果から、それぞれ $d_c=2mm$, $d_y=7.5mm$ とし、耐力については、 (3)式、(4)式によった。以上より、計 算値モデルは実験結果を安全側に評価す ることが確認できる。

5. まとめ

実大架構実験により、一連の研究で開発したアンボンド PC 圧着架構に適用する PCa 床スラブシステムの性能を検証した 結果,以下の知見を得た。

- (1) 新しく提案したシアコッターによる床 スラブー梁接合方法により、スラブ面 内せん断力が伝達できることが確認された。
- (2) 要素実験結果に基づいて設定した接合 部の耐力評価法により,復元力特性が 安全側に評価できる。

(b) コッター底面のひび割れ図 10 ひび割れ強度算定断面

表1 耐力計算値と実験値の比較

	計算値(kN)	実験値(kN)	備考
ひび割れ強度 $_{c}Q_{c1}$	57.8 48.5	宝殿 1	
ひび割れ強度 $_c Q_{c2}$	33.7	48.5	夫₩ 1
最大耐力 Q_y	52.5	60.3	実験 2

参考文献

- 1) 朝賀亮太,迫田丈志,前田匡樹ほか:構造安全性と生産合理性の融合を目指した鉄筋コンクリート 造事務所ビル建築に関する研究(その7 アンボンド PC 圧着架構に適用する PCa 床スラブ-梁接合シ ステムの開発),日本建築学会大会学術講演梗概集, C-2 構造IV, pp.663-664, 2008.9
- 朝賀亮太, 迫田丈志, 前田匡樹ほか:アンボンド PC 架構に適用する PCa スラブ-梁接合部の耐力評価(その1 実験概要と破壊経過), (その2 荷重-変形特性と耐力評価), 日本地震工学会大会梗概集, pp232-235, 2007
- 3) 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震改修設計指針・同解説,2001