ヒートパイプを利用したパイプクーリングの施工報告

鉄建建設(株)	正会員	工修	〇高須賀	伸生
国土交通省中国地方整備局			船本	恵一
鉄建建設(株)			前田	智宏
鉄建建設(株)		工修	伊吹	真一

1. はじめに

PC箱桁橋の端部横桁はマスコンクリート部材であり、温度ひび割れの発生が懸念される。温度ひび 割れ対策として従来から行われてきたパイプクーリングは、目標とする冷却効果を得るための水温、 流速、クーリング期間の適切な設定と冷却水の循環設備を必要とする。さらに施工中は水温管理およ び点検の実施を必要とし、コスト・施工管理に掛かる負担は構造物の規模に比例して大きくなる。

今回,あらかじめ冷却媒体を密封した「ヒートパイプ」を使うことで比較的簡易に行えるパイプク ーリングを開発した。クーリングの原理は、ヒートパイプ内部の作動液の蒸発作用で起こる熱移動に より周囲のコンクリートの水和熱を吸収・放出し温度上昇を抑制するものである。本稿では、PC箱桁 橋の新設工事において、端部横桁に本工法を適用した結果を報告する。

2. ヒートパイプを利用したパイプクーリングの原理

2.1 ヒートパイプの原理

ヒートパイプ¹⁾とは、パイプ内に冷却媒体が密封され たもので、その熱移動スピードは銅棒の数十〜数百倍 の熱伝導率に相当することが特徴である。ヒートパイ プの内部構造と原理の概念図を図-1に示す。

2.2 施工順序とクーリングの仕組み

型枠・鉄筋組立て時,50~75cm間隔に直径50mm程度 の鋼製シースを設置しておく。コンクリート打込み後4 ~6時間後のコンクリートが硬化し始めた時点で,シー ス内にヒートパイプを挿入し,シース内に水を充填す る。コンクリート内部の熱が鋼製シースおよび水を介 してヒートパイプに伝達され,ヒートパイプによる吸 熱と放熱の連続作用によりコンクリート内部がクーリ ングされる仕組みである(図-2,写真-1)。

写真-1 ヒートパイプによるパイプクーリング状況

図-1 ヒートパイプの原理

3. PC 箱桁橋端部横桁への適用

3.1 施工概要

対象構造物は、「東広島・呉道路馬木高架橋PC上部工事【発注者:国土交通省中国地方整備局広島 国道事務所】」のPC4径間ラーメン連続箱桁橋の端部横桁である。上部工全体図を図-3に、コンクリ ート配合表を表-1に示す。端部横桁は2.5m×1.95m×5.4mのマスコンクリートであり、且つ早強セメ ントを用いているため、コンクリート内部と外部の温度差に伴う内部拘束ひび割れの発生が予想され た。したがって、内部温度上昇を抑制する目的で、ヒートパイプを利用したパイプクーリングを用い ることにした。

図-3 上部工全体図(第3・4径間のみ表示)

3.2 ヒートパイプ配置および温度計測

ヒートパイプの配置および温度計測配置図 を図-4に示す。

表-1 コンクリート配合表								
	粗骨材	水ヤメ		単位量(kg/m ³)				
セメント 種類	の最大 寸法 (mm)	、 ト比 (%)	細骨材 率(%)	水 W	セメト C	細骨材 S	粗骨材 G	高性能 AE 減水剤
Н	20	38	42.1	170	447	717	996	4.92

ヒートパイプ配置間隔は,500mmピッチを基

本とし、PC鋼材・鉄筋に干渉しないように決定した。コンクリート内部には2m埋込み、放熱面積を大 きくとりヒートパイプの効率拡大を図るため気中の放熱区間を3mとした。また、ヒートパイプの放熱 部において送風機による送風冷却を実施した(写真-1)。クーリング期間は、コンクリート打設後4 時間後から3日間とした。

温度計測は、コンクリート内部、ヒートパイプ表面、シース表面の温度、シース内の水温および外 気温について実施した。

図-4 端部横桁ヒートパイプの配置・温度計測配置図

4. 温度計測結果と解析値との比較

ヒートパイプを利用したクーリングの効果を 検証するため,熱電対による計測値と温度解析 結果の比較を行った。

4.1 温度解析手法および熱物性値

温度解析に用いるコンクリートの発熱特性, 熱的性質および強度特性については,マスコン クリートのひび割れ制御指針²⁾に基づいて決定 し,解析は,実測された外気温に対して3次元 有限要素法 [FEM] により行った。ヒートパイプ およびシース内の水の各要素に与える熱物性値 を**表-2**に示す。

ヒートパイプの熱移動のメカニズムは,パイ プ内の蒸気流によるものであり熱伝導と異なる。 またヒートパイプは,周囲の温度条件により熱 輸送量が変化する。シース内の水についても液 体の対流などの特性を考慮する必要がある。そ こで,一般的な温度応力解析用プログラムでヒ ートパイプのクーリング効果を評価するために, ヒートパイプおよびシース管内の水の見かけの 熱伝導率を模型試験体の計測結果から逆解析で 算定した。模型試験体の寸法およびその解析モ デルを図-5に示す。

4.2 実施工計測値と解析結果の比較

端部横桁の中央断面におけるコンクリート温度 計測値の最大値は,86.6℃であった。この着目 点の温度履歴について,計測値と解析値(クー リング有り・無し)との比較を図-6に,温度 解析で得られた最高温度分布を図-7に示す。 ヒートパイプを設置した実測値と解析値の比較 では,最高温度到達時期に数時間の差異がある ものの,最高温度の値はほぼ等しく,その後の 降下勾配も近い傾向を示しており,解析の妥当 性が確認された。また,実測値と無対策の解析 値の比較では,コンクリート内部温度の低下 (クーリング効果)は13.4℃であった。 表-2 解析に用いた熱物性値

項目	物性値	備考	
ヒート パイプ	見かけの熱伝導率	40000 W/mK	銅の約 100 倍
	密度	8940 kg/m ³	銅と同じ
	比熱	0.38 J/g°C	銅と同じ
	表面熱伝達率	70 11/ 21/	計測・逆解析より
	(扇風機による送風)	/0 W/m ⁻ K	風速 5m/s 程度
シース 内の水	見かけの熱伝導率	1.8 W/mK	計測・逆解析より
	密度	1000 kg/m ³	
	比熱	4.2 J/g°C	

※ ヒートパイプの露出長さ。実施エモデルでは、3.0m。

図-5 模型試験体の寸法および解析モデル

これらの結果から、ヒートパイプを利用したクーリング行うことにより、端部横桁の水和熱による 温度上昇が抑制されることが確認できた。ただし、解析用熱物性値は少ない測定結果より求めている ため、今後さまざまな環境条件での検証を重ねていく必要がある。

4.3 ひび割れ指数による評価とひび割れ発生の有無

温度応力解析による最小温度ひび割れ指数の分布を図-8に示す。ヒートパイプを 設置していない無対策のケースでは、表面 の大部分でひび割れ発生確率50%以上に相 当する1.0²⁾以下となっている。一方、ヒ ートパイプを設置したケースは全体的に指 数が大きくなっており、ひび割れ発生確率 が5%以下に相当する1.8²⁾を上回る部分も 拡大した。実施工においても、竣工時点で 端部横桁の表面やシースの周囲にひび割れ の発生はなかった。

これらの結果から,ヒートパイプを利 用したパイプクーリングにひび割れ抑制 効果があり,ヒートパイプ材料の力学 的・熱的特性がコンクリートに悪影響を 及ぼさないことも同時に確認できた。

5. まとめ

ヒートパイプを利用したパイプクーリ ングは、コンクリートの水和熱による温 度上昇量の低減が可能であり、ひび割れ 抑制対策として有効な手段であることが 確認できた。

図-7 最高温度分布比較

今後,さまざまな環境条件のデータを蓄積し、検証を重ねていく必要がある。その上で,詳細な熱 的特性の把握とクーリング効果の評価を行い,ヒートパイプの配置方法,放熱促進方法を改良したい と考えている。

写真-2 橋梁完成写真

参考文献

- 1) 高岡道雄,馬渡恒明,坂谷益司,望月正孝,益子耕一,伊藤雅彦:長尺ヒートパイプの開発 とヒートパイプの応用製品,藤倉電線技報,第68号, pp50-63, 1984.12
- 2) (社)日本コンクリート工学協会、マスコンクリートのひび割れ制御指針2008