由良川橋(A1~P3径間)の施工

(株) IHIインフラ建設 正会員 〇鈴木 広幸

(株) I H I インフラ建設 吉田 真司

断面図

900

~4166

445 445

上り線

10200

9310

445

 $3500 \sim 8500$

下り線

10200

9310

国土交通省 近畿地方整備局 福知山河川国道事務所 森 文彦

1. はじめに

由良川橋広野地区は、京都縦貫自動車道の一部区間である丹波綾部道路(綾部市~京丹波町間 29.2km)の京丹波わちIC付近に位置するPC3径間連続箱桁橋である。本橋の施工上の特徴と しては、以下の点が挙げられる。①中間支点横桁部は、最大で桁高8.5m、厚さ6.5mを有した充実 断面のため、マスコンクリート構造である。②府道、町道およびJR山陰線の上空に架設される ため、厳重な飛来・落下事故防止対策が必要である。③上下線が近接して並列に施工されるため、 施工時の作業空間に配慮が必要である。

本橋は施工中のため、上記について中間報告を行う。

2. 工事概要

工事概要および全体一般図を表-1,図-1に示す。

	衣── ⊥ 争 恢 安	_			
工事名	丹波綾部道路 由良川橋広野地区上下部工事				
発注者	国土交通省 近畿地方整備局				
工事場所	自)京都府船井郡京丹波町大簾地先				
	至)京都府船井郡京丹波町広野地先				
構造形式	PC3径間連続箱桁橋				
橋長	上り線 282.010m , 下り線 263.000m	~ 800			
支間長	上り線 72.675m + 126.399m + 80.436m	- 000			
	下り線 66.675m + 113.000m + 80.825m	3			
有効幅員	上り線 9.310m , 下り線 9.310m				

- 327 -

3. 中間支点横桁部のマスコンクリート対策

3.1 対策概要

本橋梁の中間支点横桁部は、充実断面かつ同構造形式では最大規模の部材寸法(高さ8.5m×厚さ 6.5m)のマスコンクリート構造であることから、セメントの水和熱に起因した温度ひび割れの発生が 懸念された。そのため、発生温度が高い部材内部にパイプクーリングを実施し、通水冷却効果により、 部材内部の水和発熱量を低減し、温度ひび割れの発生を抑制することとした。

3. 2 三次元温度応力解析

(1) 解析条件

施工に先立ち,三次元温度応力解析を実施し,パイプクリーングによる効果を確認することとした。 コンクリート打設は1日の打設数量および施工性を考慮し,3ロットに分割(図-2)して行うため, 解析もロット割を考慮して行った。解析条件を表-2に示す。

コンクリート	使用セメント種		早強] [从与泪	架設地点の日平均気温データを使用		
	211-1 設計基準強度		40		クトメい血	(9月と仮定し20℃前後)		
	単位セメント量	kg/m^3	423		熱伝達率1)	合板	W/m^2 °C	8
	単位水量	kg/m^3	165			養生マット	W/m^2 °C	5
パイプ クリーング	パイプ径	mm	27.6			露出面	W/m^2 °C	14
	流量	1/分	20			ハ゜イフ゜クーリンク゛ ²⁾	W/m^2 °C	358
	通水温度	°C	20					

表-2 温度解析条件

(2) 解析結果

三次元温度応力解析では、パイプクーリングを実施すると、部材内部の最高温度は、 15° 2 0 $^{\circ}$ 程度低減する事ができ、平均ひび割れ指数は、0.7程度から1.3以上へ改善できることが確認できた。解析結果を図-3に示す。

3.3 パイプクーリングの実施

三次元温度応力解析結果を踏まえ、中間支点横桁部にパイプクーリングを実施した。クーリングパ イプには、1インチ(内径27.6mm/外径34mm)のSGP管(SGP25A)を用い、配置間隔は、コンクリ ート打設の施工性を考慮して、水平方向平均750mm間隔、鉛直方向平均500mm間隔とした(図-4)。 クーリングパイプ内の通水は、水温コントロールユニットにて温度を20℃程度にした水を使用し、コ ンクリート内部温度と外気温の差が20℃以内となる5日間行った。パイプクーリングの設備図を図-5に示す。パイプクーリング終了後には、クリーングパイプ内の空隙にグラウトモルタルを充填した。

3. 4 コンクリート温度計測結果

コンクリート温度の計測箇所および結果を図-6,表-3に示す。コンクリート最高温度の実測値 は、解析値に対し、1ロット、3ロットは5℃程度高く、2ロットは6℃程度低い結果となった。原 因として、クーリングパイプ配置が、1ロット、3ロットはPC鋼材や鉄筋との取り合いを考慮し、 若干偏ったため、部分的に冷却効果を得づらい箇所があったことに対し、2ロットは全体的に配置で きたことで、冷却効果が得やすかったことが考えられる。さらに、実施工と解析条件の仮定値(通水 温度、外気温など)の誤差なども考えられる。ただし、パイプクリーングを行わなかった場合には、 コンクリート温度が90℃程度になることを考慮すると、一定の冷却効果を得られており、施工後にひ び割れを確認できなかったことを鑑みると、マスコンクリート対策としてパイプクーリングは有効で あったと考える。

表-3 温度計測結果と解析値の比較(P2)

		(°C)			
	コンクリート最高温度				
	実測値	解析值			
3ロット	75.3	70.9			
2ロット	65.1	71.6			
1ロット	82.0	75.6			

4. 飛来·落下物防止対策

P2張出し部は,府道,町道およびJR山陰線 上に架設するため,近接工事範囲の柱頭部施工, 張出し施工および橋面施工には,足場板,メッシ ュシートなどにより全面防護を施した(図-7)。 さらに,安全対策としてJR山陰線の列車通過時 には,作業の停止や,資材運搬用のクレーンの旋 回停止を行った。また,張出し架設用の架設作業 車の移動は,事前に列車運行ダイヤを確認し,列 車が通過しない時間に行った。

5. 上下線近接に配慮した施工

本橋梁は上下線が,近接して並列に架設され,工程 の関係から,同時期に張出し架設を行う必要があった。 そのための施工的な配慮として以下の点があった。 ①床版横綿PC鋼材は,上下線の中央側へのジャッキ 配置が困難なことを考慮し,外側からの片側緊張と

して設計されている(**図-8**)。

②架設作業車の上下線中央側への張出し部分を,最小 寸法に改造し,干渉を避けた(**写真-1**)。

③上り線を4ブロック程度先行して施工し、架設作業 車が並列しないように配慮した(写真-2)。

図-8 床版横締PC鋼材緊張位置図

写真-2 P2張出架設状況

6. あとがき

本橋の施工は,現在(5月上旬)はP1張出し施工が完了,P2張出し施工は進行中の状態で ある。無事故・無災害で順調に進行できており,適切な施工,安全対策ができていると考えてい る。安全な施工および適切な品質を確保して竣工を迎えるために,引き続き努力をしていきたい。

今後,本報告が同種橋梁において,現場施工の参考になれば幸いである。最後に,本工事の計 画・施工にあたり,多大なご指導,ご協力をいただいた関係各位に深く,感謝の意を表します。 参考文献

1) 土木学会, コンクリート標準示方書 設計編, 2007年制定

2)田辺忠顕,山川秀次,渡辺朗:パイプクーリングにおける管壁面の熱伝達率の決定ならびに冷却効 果の解析,土木学会論文報告集 第343号・1984年3月