# CFRP材を適用したプレストレストコンクリート桁の載荷試験

| 東京製綱(株)   |     | 〇古瀬 | 徳明  |   |
|-----------|-----|-----|-----|---|
| 北海道大学大学院  | 正会員 | 横田  | 弘   |   |
| 港湾空港技術研究所 | 正会員 | 加藤  | 絵万  |   |
| 香川大学      |     | 岡崎  | 慎一郎 | S |

## 1. はじめに

優れた力学特性を有し、腐食しないCFRPを補強筋および緊張材に用いることでコンクリート構造物の力学性能や耐久性を向上させ、ライフサイクルコストを低減できる可能性がある。

そこで、本研究では、従来のPC桁へのCFRP棒材の適用性およびライフサイクルコストの検討を目的 とし、緊張材および補強筋の材料と構成が異なるPC試験桁を同一の断面寸法で製作し載荷試験を行う ことで力学性能を評価した。その結果、CFRPを適用したPC桁は、従来のPC桁と同等の力学性能を有す ることを確認した。

## 2. 供試体

供試体は、実際の桟橋上部工のPC主桁をもとに桁支間中央部の桁下縁応力が同等となるように設計 した<sup>1)</sup>「小型のモデル桁(小型供試体)」と「実物大のモデル桁(実物大供試体)<sup>2)</sup>」を製作した。 小型供試体では、緊張材および補強筋の材料と構成が異なる桁の力学的性能に与える影響を確認した。 実物大供試体では、小型供試体の載荷試験結果を踏まえ、長期耐久性の確保と材料コストの低減の両 立を可能とする緊張材・補強材の構成について検討し、そのような断面を有する桁の力学性能を考察 した。

## 2. 1 小型供試体

小型供試体の概要を表-1に示す。供試体は、実際の桟橋上部工のPC主桁をもとに桁支間中央部の桁 下縁応力が同等となるように設計したプレテンション方式PC桁であり、同一断面で緊張材の構成が異 なる(a) CFRPのみ(Type-1), (b) CFRPとPC鋼より線との組み合わせ(Type-2), (c) PC鋼より線 のみ(Type-3)の3タイプについて検討した。なお、桁の寸法は、桁高さ300mm、幅240mm、長さ3000mm であり、各タイプ2体ずつ製作した。なお、小型供試体の使用限界状態は、桁中央部においてコンクリ ートの曲げひび割れ強度(2.2N/mm<sup>2</sup>)と同等の応力が作用する状態とした。

### 2.2 実物大供試体

実物大供試体の概要を表-2に示す。桁の寸法は、桁高さ550mm,幅700mm,長さ9900mmである。供試体は、実際の桟橋上部工のPC主桁を実部大でモデル化したもの(Case-0<比較材>)と、同一の諸元でPC鋼より線の一部をCFRP緊張材およびCFRP補強筋に置き換えたもの(Case-1)の各1体とした。

### 3. 使用材料

小型および実物大の供試体に使用した緊張材の仕様を表-3に示す。なお、載荷試験時のコンクリー ト強度は56~57 N/mm<sup>2</sup>であった。

|          | 項目 Type-1 Type-2 |                      | Type-3                                               |                      |  |
|----------|------------------|----------------------|------------------------------------------------------|----------------------|--|
| 使用       | 緊張材              | CFRP 1×7 12.5 ¢      | SWPR7BL 12.7mm(上段:2本,中段:1本)<br>CFRP 1×7 12.5¢(下段:2本) | SWPR7BL 12.7mm       |  |
| 補強材      | 補強筋              | CFRP 5.0 $\phi$      | CFRP 5.0 Ø                                           | D10                  |  |
| 設        | 使用限界             | 92.0                 | 92.0                                                 | 92.0                 |  |
| 計        | 状態               | (スパン中央部でのたわみ量:1.8mm) | (スパン中央部でのたわみ量:1.8mm)                                 | (スパン中央部でのたわみ量:1.8mm) |  |
| 荷        | 初期ひび             | 113.9                | 116.3                                                | 116.6                |  |
| 重        | 割れ時              | (スパン中央部でのたわみ量:2.2mm) | (スパン中央部でのたわみ量:2.3mm)                                 | (スパン中央部でのたわみ量:2.3mm) |  |
| [kN]     | 終局時              | 228.3                | 232.5                                                | 237.7                |  |
| 析中央部の断面図 |                  |                      | PC用上□回<br>PC用上□回<br>0<br>CFRP ● PC 網上り線              |                      |  |

表-1 小型供試体の概要

表-2 実物大供試体の概要

| 項目        |      | Case-0                                                                                  | Case-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|-----------|------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 使用<br>補強材 | 緊張材  | SWPR7BL 15.2 $\phi$                                                                     | SWPR7BL 15.2mm(上段:2 本, 中段:4 本)<br>CFRP 1×7 15.2 <i>φ</i> (下段:6 本)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|           | 補強筋  | D13                                                                                     | CFRP 5.0 $\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 設         | 使用限界 | 116.0                                                                                   | 116.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 計         | 状態   | (スパン中央部でのたわみ量:7.0mm)                                                                    | (スパン中央部でのたわみ量:6.9mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 荷         | 初期ひび | 245.4                                                                                   | 215.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 重         | 割れ時  | (スパン中央部でのたわみ量:14.8mm)                                                                   | (スパン中央部でのたわみ量:12.8mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| [kN]      | 終局時  | 505.5                                                                                   | 460.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 析中央部の断面図  |      | 30 640 30<br>186 468 860<br>113<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105 | 20 640 20<br>189 462 59<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP<br>CFRP |  |  |

## 表-3 緊張材の仕様

| 項 目 .                           |                            | 小型供試体     |          | 実物大供試体              |           |            |
|---------------------------------|----------------------------|-----------|----------|---------------------|-----------|------------|
|                                 |                            | PC 鋼より線   | CFRP     | PC 鋼より線             | CFRP      | 備考         |
|                                 |                            | SWPR7BL   | 7 本より    | SWPR7BL             | 7 本より     |            |
|                                 |                            | 12.7mm    | 12.5mm   | 15.2mm              | 15.2mm    |            |
| 供試体記号                           |                            | Type-2, 3 | Typ-1, 2 | Case-0              | Case-0, 1 |            |
| 有効断面積 [mm²]                     |                            | 98.71     | 76.0     | 138.7               | 115.6     |            |
| 引張破断荷重 [kN]                     |                            | 183       | 184      | 261                 | 270       |            |
| 引張応力度 fipu [N/mm <sup>2</sup> ] |                            | 1850      | 2421     | 1850                | 2336      |            |
| 弾性係数 [kN/mm <sup>2</sup> ]      |                            | 200       | 155      | 200                 | 155       | <u>%</u> 1 |
| 概算単位重量 [g/m]                    |                            | 774       | 145      | 1101                | 221       |            |
| 初期引張応力度 [N/mm <sup>2</sup> ]    |                            | 1350      | 1800     | 1350                | 1800      |            |
| 初期引張荷重 [KN]                     |                            | 133       | 137      | 187                 | 208       |            |
| 司運亡士卒の制限は                       | 緊張作業中 0.8fpu               | 1440**2   | 1869     | 1440 <sup>%2</sup>  | 1869      |            |
| 51版心力度の利限10                     | 緊張作業直後 0.7fipu             | 1295*2    | 1635     | 1295 <sup>**2</sup> | 1635      |            |
| [N/mm²]                         | 使用限界状態 0.7f <sub>fpu</sub> | 1110**2   | 1635     | 1110**2             | 1635      |            |
|                                 | プレストレス導前                   | 1.5       | 6.0      | 1.5                 | 6.0       |            |
| リフクセーション率 [%]                   | 高温養生の影響                    | 1.0       | 1.0      | 1.0                 | 1.0       | <u>ж</u> з |

※1:製品カタログ値より引用。

※2:社団法人 日本道路協会:道路橋示方書(1共通編・IIIコンクリート橋編) 同解説,平成24年3月

※3:PC 鋼より線と同等と考えた。ただし,CFRP の方が PC 鋼より線よりも温度影響は小さい。

#### 4. 載荷試験

4.1 小型供試体

4.1.1 試験方法

載荷方法は、支点間長さを2700mm、曲げスパン900mmとした3等分点2点集中載荷とし、載荷荷重と桁 中央のたわみ量を測定した。試験は、①初期のひび割れ発生が確認されるまで載荷したのち除荷し (約2~5kN)、②再度 降伏点まで載荷したのち除荷し(約2~5kN)、③最後に終局まで載荷した。

### 4.1.2 試験結果

図-1の(a),(b)は,それぞれ(a)初期ひび割れ発生時まで,(b)終局時までの荷重-たわみ曲線を 示す。載荷荷重に対する使用限界状態(載荷荷重:92kN)および初期ひび割れ発生時までの載荷荷重 に対する桁中央のたわみ量は,いずれの供試体も設計値(表-1参照)とほぼ同等であり,載荷荷重に 対するたわみの挙動は,いずれの供試体もほぼ一致していた。終局時の載荷荷重は,いずれも約 300kN(設計値:228.3~237.7kN)で,破壊形態は支間中央付近における桁上縁側でのコンクリートの 圧縮破壊であった。使用した補強材の違いによる桁性能(耐荷力やたわみ量)の差は小さく,ほぼ同 等の曲げ性能を有することが確認できた。



図-1 荷重-たわみ曲線

### 4.2 実物大供試体

## 4.2.1 試験方法

載荷方法は、支点間長さを9600mm、曲げスパンを1000mmとした4点曲げ載荷とし、載荷荷重と桁中央のたわみ量を測定した。試験は、小型供試体と同様な載荷方法で行った。

# 4.2.2 試験結果

図-2の(a),(b)は、それぞれ(a)初期ひび割れ発生時まで,(b)終局時までの荷重-たわみ曲線 を示す。使用限界状態(載荷荷重:116kN)および初期のひび割れ発生時までの載荷荷重に対する桁中 央のたわみの挙動はほぼ一致していた。終局時の破壊形態は、いずれの供試体も支間中央付近におけ る桁上縁側でのコンクリートの圧縮破壊であったが、終局時の載荷荷重(耐荷力)およびたわみ量は、 Case-1の方がCase-0に比べそれぞれ10%および30%程度大きかった。また、図-3の(a),(b)は、お のおの Case-0, Case-1の終局時までのコンクリート側面に生じたひび割れの分布状況を示す。ひび割 れの分布状況は、Case-1の方がCase-0に比べやや小さなひび割れが広範囲にわたり分散している傾向 にあった。耐荷力およびたわみ量の違いは、桁の下縁側に使用した緊張材の機械的特性の違いによる もので、Case-1のCFRPの緊張材がCase-0のPC鋼より線の緊張材に比べ引張破断強度が高く、降伏点が なく破断まで弾性変形であること、CFRPの緊張材の弾性係数がPC鋼より線に比べ小さいことに起因し たものと推察される。終局時のひび割れ分散性の違いは、緊張材とコンクリートとの付着力の違いに







(b) Case-1 図-3 供試体側面のひび割れ分布(メッシュサイズ:□100)

5. まとめ

実際の桟橋上部工のPC主桁をもとに桁支間中央部の桁下縁応力が同等となるように設計した「小型 供試体」と「実物大供試体」を設計・製作し、載荷試験を行った。その結果、次のことが分かった。

- (1) CFRPをPC桁の緊張材および補強筋に使用した場合も、PC鋼より線および異形鉄筋を使用したもの と同等の曲げ性能を有することが確認できた。
- (2)小型供試体では、使用した補強材の違いによる桁性能(耐荷力やたわみ量)の差は小さく、ほぼ 同等の曲げ性能を有することが確認できた。
- (3)実物大供試体では、桁の下縁の緊張材にCFRP材を適用した方がPC鋼より線を使用したものより耐荷力が高く、終局時に大きなたわみを呈することが確認できた。それらは、緊張材に使用した CFRPとPC鋼より線の機械的特性およびコンクリートとの付着特性の差に起因しているものと推察 された。

今後は、ライフサイクルコストの評価と併せた設計施工の考え方を整理する予定である。

参考文献

- 1) 『連続繊維補強材を用いたコンクリート構造物の設計・施工指針(案)』コンクリートライブラリ - 第 88 号, 1996.9
- 2) 榎本 剛, 古瀬 徳明, 加藤 絵万, 岡崎 慎一郎, 横田 弘: CFRP を使用する港湾 PC ホロー桁の実 物大載荷実験, 第42回土木学会関東支部技術研究発表会 V-61, 2015 年 3 月