広幅員一面吊り形式の長大エクストラドーズド橋の耐震設計

大成建設(株)	正会員	工修	〇長尾	賢二
大成建設(株)	正会員	博 (エ)	細谷	学
西日本高速道路(株)			福田	雅人
★ 成建設(株) • (株)ピー	エス=茺川	Ⅴ 工修	水公	正樹

1. はじめに

新名神高速道路生野大橋(橋長 606m)は、国内最大規模の中央支間長(188m)を有する PRC7 径間 連続波形鋼板ウェブエクストラドーズド橋(以降,ED 橋)である(図-1)。このうち,P4~A2 間の ED 橋は、図-2 のように総幅員 25.150m の上下線一体断面(以降,暫定形)を一面吊りする構造であり, ストラットを用いた総幅員 35.400m の将来拡幅時(以降,完成形)に対しても、橋梁全体の地震時の安 全性が求められた。本橋の耐震設計で適用する道路橋示方書が、基本設計時点の H14 年版から東北地 方太平洋沖地震を経て改訂された H24 年版に変更となったが、下部工に関してはすでに発注済みであ ったため、構造細目の変更はできないとの制約条件があった。さらに、ED 橋区間の中央径間(P5-P6 間)の大部分が JR 線上をほぼ平行するかたちで交差しており、大規模地震発生時にも第三者被害を最 小限にとどめることが必要となる重要度が高い橋と位置づけられた。このことから、レベル1地震時 (以降,L1 地震時)のみならずレベル2 地震時(以降,L2 地震時)においても、すべての部材の応答値 を弾性域の範囲内とすることを設計方針としている。本稿では、このような要求性能を満足させるべ く実施した耐震設計の概要について報告する。

2. 構造概要および耐震設計の方針

各部材の使用材料を表-1に示す。上部工のコン -クリートは主桁,主塔ともにσck=50N/mm²,また 主塔に用いる主鉄筋の材質はSD490である。主塔 高さは28mで,主塔断面幅は長辺方向(橋軸方 向)の基部で8.5mであるが,短辺方向(橋軸直角 方向)については,基部では壁高欄間に収まるよ うに1.2mであるのに対して,斜材定着部を有する 上部では2.2mに拡幅しており,トップへビーな構 -造となっている。

表-1 使用材料

項目	部位	仕様		
	扬咖	$P2 \sim P4$: $\sigma ck = 30 N/mm^2$		
	倚胸	PI : σck=36N/mm ⁻		
コンクリート		P5, P6 : σ ck=40N/mm ²		
	主塔	$\sigma ck = 50 N/mm^2$		
	主桁	$\sigma ck = 50 N/mm^2$		
主鉄筋	香咖	SD345		
	们同期	(P5:SD390)		
	主塔	SD490		
	主桁	SD345		

橋の重要度区分	B種の橋
地域区分	A2地域(兵庫県)
	 地域別補正係数
	Cz=1.00, C _I z=1.00, C _{II} z=1.00
地盤種別	I種地盤

表-2 耐震設計の基本条件

基本設計における完成形断面の耐震検討では、P5主塔基部 の橋軸直角方向の照査がもっとも厳しく、橋脚は、橋軸直角 方向はP1~P6すべての脚下端、橋軸方向はP3,P5,P6の脚下端 で塑性化が生じていた。このため、詳細設計では、まず上部 構造の支持条件の見直しを行うこととした。基本設計では、 P1,P5およびP6橋脚が剛結、それ以外の橋脚は地震時水平分 散支承を採用していたのに対して、詳細設計では支承部での エネルギー吸収に期待して、P1橋脚を除くすべての支点で全 方向免震支承(HDR-S)を採用した。なお、主塔を有するP5およ びP6柱頭部は、揖斐川橋などでも実績のある1橋脚2支承線の 支承構造(以降、二線支承構造)としている¹⁾。耐震設計の基 本条件を表-2に示す。本橋は、高次の不静定構造で、地震時 の挙動が複雑であることが予想されることから、静的な解析 では地震時の挙動を十分に評価できないと判断し、L1地震時、

図-2 断面図(P5/P6 柱頭部)

L2地震時ともに動的解析により,各部材が要求性能を満足するかを照査している。以下に,このうち L2地震時の検討について述べる。

3. 非線形動的解析による耐震性の検討

3.1 解析モデル

解析モデルは、図-3に示す3次元立体骨組モデルとし、暫定形断面、完成形断面を有する2タイプの 骨組モデルを作成した。各部材のモデル化は橋脚、主塔および主桁を非線形梁要素、斜材を軸力のみ を伝達する線形梁要素、橋台を弾性梁要素、基礎を線形ばね要素、免震支承を非線形ばね要素とした。 なお、P5およびP6の二線支承構造部は、橋軸直角方向の同一支承線上に3基の免震支承を配置するが、 解析ではばね定数が等価な2組の要素でモデル化し、1支点あたり4組のばね要素を配置している。また、 A1, A2およびP2~P4は、2基の支承を模擬したばね要素を配置している。部材の非線形特性については、 橋脚、主塔および主桁を曲げモーメント(M)-曲率(ϕ)モデルで、ゴム支承をバイリニアモデルで評価 した。解析手法は直接積分法(Newmark β 法)とし、減衰マトリックスはレーリー型減衰モデルとして いる。設計地震動は、H24年版道示に示されるとおり、合計6波(タイプI:3波、タイプII:3波)を 耐震設計上の地盤面である深礎杭天端およびフーチング下面に入力した。

3.2 固有值解析結果

動的解析に先立ち、固有値解析を実施した。レーリー減衰の設定における着目次数のうち、低次モードにおける固有周期を表-3に、橋軸方向および橋軸直角方向それぞれに卓越する振動モード図を図-4に示す。表-3によると、免震支承の採用により、基本設計と比較して橋全体の固有周期が長くなって

いることが分かる。なお、各次数の振動モードなら び刺激係数などを確認し、高次モードでの減衰が過 度にならないよう、動的解析におけるレーリー減衰 を設定した。

	橋軸方向	橋軸直角方向
基本設計	1.597(S)[1次]	2.070(S)[2次]
詳細設計	1.914(S)[1次]	2.288(S)[1次]

3.3 耐震性の照査

すべての橋脚お よび主塔が塑性化 しないようにする には,動的解析で 橋全体の地震時の 挙動を確認しなが ら,特定の支点に 負却が集中しない ように各支点の水 平力をコントロー ルする必要があっ

部位			P6		P5		P4		
設計地震動			タイプ I	タイプⅡ	タイプI	タイプⅡ	タイプI	タイプⅡ	
橋軸方向	最大応答曲率	φ dmax	[1/m]	2.43E-04	2.35E-04	2.89E-04	2.04E-04	8.73E-04	7.22E-04
	可 降伏曲率	фу	[1/m]	3.65E-04	3.66E-04	4.48E-04	4.49E-04	1.05E-03	1.05E-03
	比率(比率 (φdmax/φy)		0.67	0.64	0.64	0.46	0.83	0.69
长业本人	最大応答曲率	φ dmax	[1/m]	3.86E-04	2.53E-04	3.51E-04	2.76E-04	5.80E-04	4.13E-04
個軸直角 方向	降伏曲率	фу	[1/m]	4.13E-04	4.14E-04	4.77E-04	4.78E-04	6.35E-04	6.40E-04
刀间	比率 (0.94	0.61	0.74	0.58	0.91	0.64	
	部位		P3		P2				
	部位			Р	3	Р	2	Р	1
	部位 設計地震	動		P タイプ I	3 タイプⅡ	P タイプI	2 タイプⅡ	P タイプI	1 タイプⅡ
	部位 設計地震 最大応答曲率	動 ¢ dmax	[1/m]	P タイプ I 9.53E-04	3 タイプⅡ 7.96E-04	P タイプ I 1.04E-03	2 タイプⅡ 9.52E-04	P タイプ I 5.08E-04	1 タイプⅡ 4.42E-04
橋軸方向	部位 設計地震 最大応答曲率 降伏曲率	動 ¢dmax ¢y	[1/m]	P タイプ I 9.53E-04 1.01E-03	3 タイプ II 7.96E-04 1.01E-03	P タイプ I 1.04E-03 1.13E-03	2 タイプ II 9.52E-04 1.13E-03	P タイプ I 5.08E-04 5.60E-04	1 タイプ II 4.42E-04 5.61E-04
橋軸方向	部位 設計地震 最大応答曲率 降伏曲率 比率(6	動	[1/m] [1/m]	P タイプ I 9.53E-04 1.01E-03 0.94	3 タイプII 7.96E-04 1.01E-03 0.79	P タイプ I 1.04E-03 1.13E-03 0.92	2 タイプII 9.52E-04 1.13E-03 0.84	P タイプ I 5.08E-04 5.60E-04 0.91	1 タイプII 4.42E-04 5.61E-04 0.79
橋軸方向	部位 設計地震 最大応答曲率 降伏曲率 比率(最大応答曲率	動 φdmax φy φdmax/φy φdmax	[1/m] [1/m] ·) [1/m]	P タイプ I 9.53E-04 1.01E-03 0.94 4.71E-04	3 タイプII 7.96E-04 1.01E-03 0.79 3.91E-04	P タイプ I 1.04E-03 1.13E-03 0.92 4.81E-04	2 タイプII 9.52E-04 1.13E-03 0.84 3.80E-04	P タイプI 5.08E-04 5.60E-04 0.91 3.94E-04	1 タイプII 4.42E-04 5.61E-04 0.79 3.21E-04
橋軸方向	部位 設計地震 最大応答曲率 降伏曲率 北率(最大応答曲率 除伏曲率 後伏曲率	動	[1/m] [1/m] [1/m] [1/m]	P タイプI 9.53E-04 1.01E-03 0.94 4.71E-04 6.04E-04	3 タイプII 7.96E-04 1.01E-03 0.79 3.91E-04 6.07E-04	P タイプ I 1.04E-03 1.13E-03 0.92 4.81E-04 6.14E-04	2 タイプII 9.52E-04 1.13E-03 0.84 3.80E-04 6.18E-04	P タイプ I 5.08E-04 5.60E-04 0.91 3.94E-04 5.77E-04	1 タイプII 4.42E-04 5.61E-04 0.79 3.21E-04 5.79E-04
橋軸方向	部位 設計地震 最大応答曲率 降伏曲率 北率(c 最大応答曲率 時代曲率 比率(c 降伏曲率 比率(c 比率(c 股大応答曲率	動	[1/m] [1/m]) [1/m] (1/m]	P タイプ I 9.53E-04 1.01E-03 0.94 4.71E-04 6.04E-04 0.78	3 ダイプII 7.96E-04 1.01E-03 0.79 3.91E-04 6.07E-04 0.64	P ダイプI 1.04E-03 1.13E-03 0.92 4.81E-04 6.14E-04 0.78	2 ダイプ II 9.52E-04 1.13E-03 0.84 3.80E-04 6.18E-04 0.62	P ダイプI 5.08E-04 5.60E-04 0.91 3.94E-04 5.77E-04 0.68	1 タイプII 4.42E-04 5.61E-04 0.79 3.21E-04 5.79E-04 0.55

表-4 L2地震時の橋脚下端の曲率(完成形)

た。このため、常時の照査で成立する最も薄い免震支承のゴム厚でのばね剛性を初期値とし、ある橋 脚が降伏した場合には、その支点近傍のゴム厚を調整し、動的解析を繰り返しながら、すべての橋脚 および主塔が塑性化しない最適ゴム厚を設定した。表-4に最終の支承ゴム形状における橋脚下端の曲 率を示すが、すべての橋脚の最大応答曲率と降伏曲率の比率がほぼ同程度に収まっている。一方、主 塔については、図-5(a)に示すように、P5主塔基部の橋軸直角方向の最大応答曲率が降伏曲率の85%程 度に達するが、弾性域内に収まっている。

4. 桁端部拘束に対する影響検討

NEXCO設計要領第二集では、L2地震時に橋台部の伸縮装置が橋軸直角方向の移動を拘束するおそれが

あるため、桁端部の支持条件を弾性支 持としたケースに加え、固定としたケ ースについても検討することとしてい る²⁾。このため、前述したモデルの両 端部を弾性支持から固定に変更して動 的解析を実施し、その影響について確 認した。この結果、P5主塔の橋軸直角 方向の照査において、基部の応答曲率 が降伏曲率を上回ったため、対策が必 要となった(図-5(b))。

対策としては、①橋軸直角方向の部 材厚の増加、②主鉄筋の鉄筋量増加な らびに材質変更、③L2地震時にも桁端 部の橋軸直角方向への移動を拘束しな

図-5 P5 主塔の曲率分布 (完成形,橋軸直角方向)

い伸縮装置の採用の3つが考えられた。①については、中央分離帯の壁高欄との離隔が20mmしかなく採 用が困難であった。②については、主鉄筋として、すでにD51ctc150mmが2段配置されており、さらな る鉄筋の追加は困難であった。また、主鉄筋の材質をUSD685に変更した検討も実施したが、弾性域に 収めることができなかった。このため、③を満足する伸縮装置を採用することとし、基本設計時の鋼 製フィンガージョイントからビーム型ジョイントに変更した。

5. 架橋地点の想定地震動に対する耐震性の検討

本橋の架橋地点付近には有馬高槻断 層が存在し,さらに,P6橋脚付近には 破砕帯が確認されており,道示に示さ れる地震動を上回る地震作用を受ける 懸念があった。そこで,架橋地点の想 定地震動(以下,サイト波)を入力波 としたL2地震時動的解析も実施し,耐 震性を確認した。

サイト波の加速度応答スペクトルを 図-6に示す。サイト波は合計8波あり、 本橋の橋軸方向はほぼ東西であること から、橋軸方向検討時にはEW成分を、 橋軸直角方向検討時にはNS成分を用い た。なお、サイト波はいずれも基盤波

であるが、本橋の地層のほとんどは岩であるため、地表面での波形と見なせると判断し、各橋脚の深 礎杭天端あるいはフーチング下面に入力している。神戸76-2-NSを入力した解析では、固有周期付近で 加速度応答スペクトルがH24年版道示の応答スペクトルを上回るため、応答値は大きくなったが、下部 工および主塔ともにすべての照査を満足し、弾性域内に収めることができた。

参考文献

1) 角谷務, 酒井秀昭:木曽川橋・揖斐川橋の計画-第二名神高速道路-,プレストレストコンクリート, vol. 39, No. 2, 1997. 3

2) 東日本・中日本・西日本高速道路株式会社:設計要領第二集, 2013.7