

〈〈〈海外文献〉〉〉

コンクリート橋の耐久性向上を目指した革新的な設計コンセプト

著: Johannes Berger, Sebastian Bruschetini-Ambro, Johann Kollegger 訳:プレストレストコンクリート海外部会*

本紙では,鉄筋を配置せずプラスチックシースにより完全に保護された PC 鋼材のみを配置したコンクリート橋の建設を 提案する。このような橋梁では,構造物の寿命に対して鉄筋腐食は決定要因とはならず,コンクリートの耐久性のみに依 存することとなる。プラスチックシースとキャップにより PC 鋼材と定着体を完全に保護することで,供用限界状態および 終局限界状態における要求性能を満足する。また,鉄筋を配置していないため床版防水の必要はなく,舗装および地覆も 必要なくなる。この橋梁建設のコンセプトは中小橋梁に適用可能であり,コンクリート橋の持続性および耐久性に革新を もたらすものである。

本工法はすでにオーストリアのザルツブルグ州, Grossarl 渓谷にある Egg-Graben 橋への適用実績がある。実施工に先立ち,供用性やじん性,耐荷性能の実用上の諸数値を得るための大型模型実験を実施した。

キーワード:耐久性,プレストレッシング,大型模型実験,コンクリート橋,電気的に絶縁した PC 鋼材の配置,プラス チックシース

1. はじめに

従来コンクリート橋で実施されてきた床版防水は,機 能が不十分であることが分かってきた。橋面へ凍結防止 剤を散布すると,ひび割れから構造物内部へ塩分が浸透 してしまう可能性がある。そのため,床版防水の補修に 加え,舗装も定期的な補修が必要である。このような定 期的なメンテナンスは高コストの原因となり,補修工事 中の交通渋滞も引き起こす。本紙で紹介する研究プロジ ェクトは,コンクリート橋の長寿命化をもたらすと同時 に補修頻度を減少させる技術を開発することを目的とし ている。

2. 研究プログラム

コンクリート橋の耐久性向上を目的に、「鉄筋、床版 防水および舗装を必要としないプレストレストコンクリ ート橋」の研究プロジェクトに着手した。より高耐久な コンクリート橋を目指すには、以下のような特性を有す るコンクリート橋の建設が必要である。

- •橋梁にはプレストレスを導入し、鉄筋を配置しない。
- PC 鋼材および定着部は、プラスチックシースおよ び樹脂製キャップにより完全に保護する。
- 腐食の危険にさらされる鉄筋を配置しないため、床

版防水を必要としない。

- ・床版防水を保護するための舗装が必要ない。
 舗装の代わりに、構造の一部として橋面上に高品質のコンクリートを打設する。
- ・地覆に相当するエッジビームは橋梁本体と一体構造 とする。
- 小スパンの橋梁では、インテグラル橋梁として設計 可能である。

鉄筋,床版防水,伸縮装置およびエッジビームの省略 により,建設時の材料コストの削減とともに将来的な保 守・メンテナンスコストの削減をもたらすことから,従 来の橋梁と比較し,本橋梁は高い経済性を示すことが期 待できる。

2.1 大型模型実験

供用性,じん性および耐荷性能の実用上の諸数値を得 るために大型模型実験を実施した(図-1)。供試体は, Egg-Graben橋を参考に設計した。供試体寸法は,長さ 15.3 m×幅0.63 m×高さ0.5 m,有効支間長は7.5 mで ある。荷重は中間支点から2.5 mの位置に載荷した。プ レストレス導入のために,プラスチックシースおよびに 完全保護した定着体を有するポストテンション・システ ム(1570/1770,断面積150 mm²のストランド7本)を 用いた。供試体コンクリートはC30/37とした。PC 鋼材

Vol.54, No.1, Jan. 2012

は直線配置とし、端部から1.5mの位置で曲げ上げた。 また、定着部には割裂防止のため補強筋を配置した。

(1) 荷重変位関係

載荷試験は変位制御で漸増載荷とし、ひび割れの進展 を記録した。C30/37 コンクリートの引張強度 2.9 N/mm² から計算したひび割れ発生曲げモーメントは 302 kNm で あったが,実際のひび割れ発生曲げモーメントは,中間 支点上で-448 kNm, 支間部で 363 kNm であった。ひび 割れ発生時の供試体の挙動は、非常に興味深いものであ った。中間支点上でのひび割れ発生荷重は285 kN であ り、それまでの荷重-変位関係には、図-2に示すよう に線形性がみられた。中間支点上でのひび割れ発生以降 も,荷重-変位関係には線形性が確認できるものの,中 間支点上の断面剛性の変化により内力が再分配されたた め、勾配は緩やかになった。その後、支間部でひび割れ 発生が確認される 420 kN まで荷重を増加させた。支間 部でのひび割れ発生以降は,荷重変位関係の線形性は失 われ、急激に変位が増大した。荷重は最終的には 656 kN に達し、最大変位は 21 mm, たわみ支間比は 1/357 であ った。破壊荷重に達したことは、曲げせん断ひび割れの 発生,コンクリートの圧壊 (spalling) とたわみの急激な 増加によって確認した。

(2) ひび割れパターン

中間支点上に発生した初期ひび割れは,幅0.05 mm, 長さ0.1 m であった。さらに荷重を285 kN から420 kN へ増加させると支間部にもひび割れが発生し,中間支点 上のひび割れは,幅0.5 mm,長さ0.3 m に達した。支間 部のひび割れは幅 0.05 mm,長さ 0.10 m であった。

656 kN で供試体が破壊したとき,最大ひび割れ幅は 2 mm,最大ひび割れ長さは0.37 m であった。また,そ の時の平均ひび割れ間隔は0.35 m,最大間隔は0.40 m, 最小間隔は0.22 m であった(図 - 3)。中間支点上では, コンクリートの圧壊がはっきりと確認できた。

(3) コンクリートおよび PC 鋼材のひずみ

ひずみ – 曲率の関係を測定するため、コンクリートの 弾性係数を 33 000 N/mm² として、死荷重およびプレス トレスによるひずみを計算した。供試体が終局状態に至 るまでのコンクリートおよび PC 鋼材の計測ひずみを図 - 4 に示す。中間支点上の圧縮領域では、モーメント が – 448 kNm ($\varepsilon_c = -0.73$ ‰) に達するまで、曲率の増 加は線形的であった。その後、コンクリートの圧縮ひず みは、最大値の $\varepsilon_{c,u} = -4.21$ ‰に達するまで非線形的に 増加した。

プレストレス導入時の PC 鋼材のひずみは $\varepsilon_{p,0} = 6.10$ ‰であり、載荷試験中の最大ひずみは $\varepsilon_{p,u} = 10.19$ ‰であった。

支間部では、載荷位置にてひずみを計測した。圧縮縁 のひずみは、両支間ともモーメント 363 kNm、コンクリ ートの圧縮ひずみ $\varepsilon_c = -0.67$ ‰まで線形的な挙動を示 した。コンクリートの最大圧縮ひずみは $\varepsilon_{c,u} = -2.29$ ‰ で、その時の曲げモーメントは 640 kNm であった。引張 側の PC 鋼材のひずみは両支間で異なる挙動を示した。 支間 2 に比べ支間 1 では、ひび割れ発生までのひずみ増 加が大きく、ひび割れ発生後はこれと反対の挙動が顕著

プレストレストコンクリート

図 - 4 曲げモーメント-ひずみ関係

となった。最大ひずみは $\varepsilon_{p,u} = 10.27$ ‰となった。圧縮 領域の PC 鋼材ひずみも同様であった。

(4) 曲げモーメント - 曲率関係

曲げモーメント - 曲率関係を図 - 5 に示す。この関係 から、供試体の断面剛性の変化が分かる。中間支点上で は、ひび割れが発生するまでは弾性挙動〔 $\kappa = M/EI$ ($E_c = 33\,000\,N/mm^2$)〕を示しており、ひび割れ発生後は 急激な剛性低下がみられた。ひび割れ後の剛性は、EI(II)(ひび割れ発生前の約 1/9)でほぽ一定となることが 確認できた。中間支点上での最大曲率は $\kappa = -0.0195\,m^{-1}$ であった。ひずみと同様に両支間での挙動は異なるもの であり、ひび割れ発生前は支間1に比べ支間2の曲率が 大きくなり、ひび割れ発生後は反対の挙動となった。

2.2 実験的研究の結果

ひび割れを発生させないコンクリート橋の建設は、こ こで述べるシステムを用いることで可能となる。鉄筋を 配置しない設計手法は EC 2 などの設計基準でも述べら れており、構造物の供用性、じん性、耐荷力は、実験的 に確認されている。また、鉄筋がなく PC 鋼材だけを配 置したような構造物も、同様に終局状態でじん性のある

Vol.54, No.1, Jan. 2012

挙動を示すことが確認されている。RC 構造物の設計で 要求される破壊メカニズムであるたわみの増大とひび割 れの進展,その後のコンクリートの圧壊が,実験によっ て確認されている。実験で得られた破壊荷重と計算によ って求まる破壊荷重を比較すると,両者はよく一致した。

3. Egg-Graben 橋

Egg-Graben 橋は、オーストリアで初めて上部工に鉄筋 を配置しない構造を採用した PC 橋である。この橋は、 ザルツブルグ州(オーストリア)の Grossarl 渓谷に、 "L109-Grossarl"へのアクセス道路橋として建設された。 本プロジェクトに関する諸元を表 - 1 および表 - 2 に示 す (訳者注:表 - 1 および表 - 2 はニュアンスの誤認を 防ぐために原文のままとした)。

表-1 プロジェクト参加者

Client :	Province of Salzburg	
Contractor :	ALPINE Bau GmbH	
Tensioning :	Grund-Pfahl-und Sonderbau GmbH	
Research :	Vienna University of Technology	

表-2 プロジェクト情報

	Concept:	Dipl. –Ing.
		Franz Brandauer
		Prof. DrIng.
Planning		Johann Kollegger
team	Structural	Institute for Structural Engineering,
	Calculation:	Vienna University of Technology
	Construction	BauCon ZT GmbH, Zell am See
	Design:	
Project	Duration:	Sept. 2007 ~ Dec. 2009
data	Bridge length:	50.68 m

3.1 橋梁設計

Egg-Graben 橋の架設地点には断層があり,両橋台の岩 質が異なる。また一方の橋台はこの断層面に部分的にか かっている。これらの特殊な地質条件と地形の険しさの ため,渓谷中に橋脚を設けることは困難であることから, 1スパンで架けられるアーチ構造が採用された。アーチ 基部の標高が異なり,死荷重によって左右非対称の変形 が発生する可能性があったため,多角形アーチ形状とし た。基本設計の段階で,温度変化や収縮により大きな拘 束力が発生することが判明したため、橋台竪壁と上部工 とをゴム支承によって分離することにしたが、これはイ ンテグラル橋梁に関するザルツブルグ州建設局の基準を 満足するものではなかった。設計においては、スイスの Schwandbach橋(1933年)が大いに参考となった。 Robert Maillart 設計のその橋梁は、支間長 37.4 m、部材 厚 0.2 m のアーチを有する非常にスレンダーな曲線橋で あり、1984 年から歴史的構造物として保護されている。

3.2 施 工

安定した岩盤上に斜角 30°で橋台を設置した。橋台背 面土と上部工との境界部には踏掛版を設置し、上部工と ステンレス鉄筋で接続した。多角形アーチ構造である Egg-Graben 橋の側面図を図 - 6に示す。

アーチリブの平面形状は Schwandbach 橋を参考に、山 側は直線、谷側は床版に合せて曲線とした。アーチリブ 厚さは基部で 0.5 m とし、3.50 m 区間で 0.40 m に変化さ せ、そこからは 0.4 m で一定とした。2 つの鉛直材の高 さはそれぞれ 3.25 m および 3.70 m とし、厚さは 0.16 m で共通とした。鉛直材は道路線形の曲線に合せて谷側に 大きく張り出した。上部工は橋台、鉛直材、アーチクラ ウンの 5 点支持かつ両端が片持ち状態の連続 PC 床版構 造とし、道路線形と同じく曲率半径 50 m でカーブさせ た。 橋 長 L = 2.37 + 7.97 + 7.97 + 14.03 + 7.97 +7.97 + 2.42 = 50.68 m、全幅 W = 9.5 m、床版厚 D =0.50 m とした。標準断面寸法を図 - 7 に示す。

3.3 構造解析

オーストリア規格である ÖNORM EN1991-2 に規定さ れているとおり,本橋設計時における荷重は Eurocode に 準ずることとし,死荷重,風荷重,温度荷重,その他特 殊荷重,交通荷重を考慮した。設計上の外力は,道路交 通に関連するさまざまな影響を考慮して決定しており, 交通荷重として用いたロードモデル1 (LM 1) では,特 殊車両荷重を無視している。

複雑な幾何学形状のため、断面力の算出には3次元 FEMを用いた。3次元モデルは実構造物形状を忠実に再 現した(横断勾配のみ非考慮)。また、1mピッチの格点 構造を有するフレーム解析を用いて結果の検証を行っ た。双方ともモデルは線形弾性体とした。

(1) 上部工の鋼材配置

構造物の安全性および供用性の確保を目的に、上床版

プレストレストコンクリート

図 - 7 標準断面図

の橋軸方向および橋軸直角方向にプレストレスを導入した。割裂防止のために配置した定着端部のステンレス鉄筋(1.4571 BSt 500)を除き,鉄筋を配置していない。橋軸方向および橋軸直角方向には1570/1770のPC鋼材(7本×150 mm², Ap = 1050 mm²)を使用した。プラスチックシース内に鋼材を配置し、埋込み式の樹脂製キャップで完全に密閉し、グラウトを充てんした。PC鋼材の本数は、常時で引張応力が発生しないように解析を行い決定した。検討の結果,PC鋼材の配置は軸力配置がもっとも合理的となり、橋軸方向には0.63 m 間隔で15本を上下2段配置とし、橋軸直角方向には山側0.5 m 間隔,谷側0.54 m 間隔で94 本を配置した。

オーストリア規格である ÖNORM EN 1992-1-17.3.2(4) [2], ÖNORM EN 1992-2 [3], ÖNORMEN 1992-1-1 [2] によると、設計荷重作用時にコンクリートが圧縮状態で ある場合,もしくはコンクリートの引張応力が $\sigma_{ct,p}$ 以 下である場合には、プレストレストコンクリートに対し 鉄筋の配置は必要ない。 $\sigma_{ct,p}$ の値は ÖNORM にしたが い, 引張強度 f_{ct.eff} = f_{ctm} = 2.9 N/mm² とした。本橋で は、温度変化や収縮に起因する拘束応力により引張力が 発生しないよう、支承を有する構造とした結果、上部工 に対し最小鉄筋の配置すら必要なくなった。終局限界状 態の検討においては ①常時荷重 ②特殊荷重 ③ 地震 時荷重の3つの荷重の組合せを考慮した。本橋は地震区 域1に位置し、その位置での地震加速度は 0.41 m/s² であ った。検討の結果、地震時荷重ではなく常時荷重の組合 せがクリティカルとなることが分かった。曲げ解析によ って、上部工の抵抗モーメント M_{Rd} が有効モーメント M_{Ed}よりも大きいことを確認した。解析では、プレスト レスのみを考慮し、鉄筋は考慮していない。せん断抵抗

解析においても、せん断抵抗 $VR_{d,c}$ が有効せん断力 V_{Ed} よりも大きいことを確認し、せん断補強筋は不要となった。

3.4 現場施工

下部工は 2008 年秋から施工した。支持地盤が地下 8 m であったため,掘削は広範囲に渡った。支持地盤上にア ーチアバット ($L \times W \times D = 15.0 \times 5.0 \times 2.0$ m)を施 工し,翌年の春からアーチリブの施工を開始した。アー チは上部工との交差部を残して施工し、上部工の施工と 同時に交差部を施工した。アーチは、基礎から鉛直材ま では密閉型の型枠を使用し、自己充てんコンクリートを 用いて施工した。

鉛直材の鉄筋にはステンレス鉄筋(1.4571 BSt 500) を使用した。一方で,アーチ部には普通鉄筋を用いてい る。これは,塩分浸透による腐食のリスクはないことお よび死荷重作用下では引張応力が作用しないような設計 になっているためである。ステンレス鉄筋を用いる場合 に比べ経済的となったが,異種金属接触腐食の観点から, 普通鉄筋とステンレス鉄筋の接触を避ける必要があり, 配筋時には注意が必要であった。鉛直材にも自己充てん コンクリートを使用した。かなり小さなアーチ断面であ ることから,施工にあたっては±10 mmの精度で管理さ れた。

上部工では、型枠をセットした後、PC 鋼材定着用の 箱抜き枠を設置した。橋軸方向のPC 鋼材は、定着間隔 を確保するため端部付近で曲げて配置した。シースは現 場で溶着を行った。溶着によるプラスチックシースの熱 変形には注意が必要であり、PC 鋼材を配置する段階で 厳密に管理を行う必要があった。橋軸方向および橋軸直 角方向に配置したシースの交差部にはモルタル製スペー

Vol.54, No.1, Jan. 2012

サーを設置し、PC 鋼材を適切な位置に配置した(図

図 - 8 PC 鋼材支持部詳細

ETA (European Technical Approval) におけるシースの 支持間隔の最大値は 0.8 m である。本橋では鋼材の配置 間隔(橋軸方向: 0.63 m, 橋軸直角方向: 0.50 m) に合 せて PC 鋼材の交点で支持した。モルタル製スペーサー とシースが平らな面で接触するよう,リブ付シースに半 円形のプラスチック製支持具を取り付けた。シースの交 点がぐらつかずに安定するよう,支持具とモルタル製ス ペーサーを樹脂製の結束線で固定し網目状に組み立てた (図 - 9)。

図 - 9 PC 鋼材配置状況

コンクリート打設前にシース内に鋼材を挿入した。コ ンクリート1m³ あたり PC 鋼材を 85 kg 配置している。 これはコンクリート打設による浮力に相当するため,鉛 直方向に対してはシースを固定していない。また,割裂 防止として定着部にのみステンレス鉄筋を配置した(図-10)。

コンクリートの水和反応による温度上昇を低減するため, RRS (Radically Reduced Shrinkage) コンクリート [C30/37 (56)]を採用した。このコンクリートは材齢56 日で設計強度に達するものであり(オーストリア規格 ÖNORM B 4710),強度発現が遅いため発熱速度も遅くな る。水和反応後の温度降下とコンクリートの収縮により

図 - 10 PC 定着部補強鉄筋 (ステンレス鉄筋)

上部工が短縮しても,両支点部が可動支承で支持されて いることから,アーチクラウンや支間中央部に拘束応力 は発生しない。また,施工時期である秋期の気象条件も 有利に作用した。

2009 年 9 月 15 日,午前 6:45 から 12 時間かけて上部 エのコンクリートを打設した。天気は良好で,打設時の 気温は 5 ~ 20 ℃であった。図 - 11 のように打設足場を 組み立ててコンクリートを打設した。打設直後の急激な 乾燥を防ぐため,コンクリート表面に皮膜養生剤を散布 した。

図-11 コンクリート打設状況

コンクリート打設後2日で最終緊張力の25%まで緊 張し,材齢13日に最終緊張力まで緊張した。緊張作業 はどちらも横締め鋼材から行った。緊張作業完了後,ダ クト内にグラウトを注入した。プレストレスによる圧縮 応力は,橋軸方向に8.0 N/mm²,横方向に5.0 N/mm²で ある。

型枠解体はコンクリート打設後1カ月より開始した。

自重による支間中央でのたわみは設計値と同等の 4.0 mm であった。完成写真を図 - 12, 13 に示す。本橋梁に要 した費用は, 1063 304 ユーロ (VAT: 20%), 橋面積 1 m² あたり 2 209 ユーロであった。

図-12 完成写真(橋梁下面より)

図 - 13 完成写真

3.5 電気的に絶縁した鋼材配置

PC 鋼材は電気的に絶縁するように配置した。プラス チックシースと樹脂製の定着具キャップを併用した本シ ステムは、電気抵抗を測定することで PC 鋼材の健全性 についてのモニタリングを可能とした。PC 鋼材を電気 的に絶縁状態とし、電気抵抗を確認することにより、耐 用期間中の PC 鋼材の健全性は容易に調査できる。

電気抵抗の低下はダクト内に水分が侵入したことを示 すため、この数値を測定することで PC 鋼材の健全性を モニタリングすることができる。電気抵抗は, PC 鋼材 と測定用に設置した鉄筋との間のインピーダンスから算 出する。

Egg-Graben 橋ではこれまでに 5 回計測を行った。構造 鉄筋が配置されていないため、補強鉄筋として配置した ステンレス鉄筋を計測した。平均すると電気抵抗の測定 結果は 7 500 k Ω m (6 800 ~ 10 000 k Ω m) に達していた。 湿気や雨量、温度や季節等の環境条件によって結果にば らつきは生じるものの、発注者の要求する電気抵抗の最 低値 300 k Ω m を大きく上回っていた。プラスチックシ ースの水密性の高さにより、この高い電気抵抗値を確保 できた。将来的に継続して測定できるように計器を設置 した。

4.まとめ

鉄筋を配置しないプレストレストコンクリート橋は, 供用限界状態および終局限界状態の要求性能を満足す る。鉄筋が腐食しない場合、橋梁の耐久性はコンクリー トの耐久性のみに依存する。プラスチックシースにより 完全に保護された PC 鋼材を配置したプレストレストコ ンクリート橋梁では,鉄筋による補強は必要ない。この 新しい発想は、中小橋梁に適用可能であり、高い耐久性 を有する橋梁の建設に新しい展望を開くものである。コ ンクリート構造の耐久性向上に向け、ウイーン工科大学 構造工学研究所(the Institute for Structural Engineering, Vienna University of Technology) で数年の研究期間を要し た。研究の結果、腐食の影響を受けやすい鉄筋を配置す ることなくコンクリート構造物を構築することは、効果 的であることが分かった。この技術は、広範囲な実験的 研究とさまざまなシミュレーションによって実現可能で あることが証明された。本工法は技術革新に関心のある 発注者の協力により, Egg-Graben 橋において初めて適用 された。

謝 辞

本工法の検討は, the Fundamental Research Funds for the Central Universities の助力を得て行った。

 「*:プレストレストコンクリート海外部会委員 藤田 知高(㈱ピーエス三菱) 水谷亮太郎(㈱錢高組)
 前川 敦(首都高速道路㈱)
 山崎 啓治(鹿島建設㈱)
 池上浩太朗(㈱ IHI インフラ建設)

【2011年11月24日受付】