

World Tech Info.

〈〈〈海外文献〉〉〉

モザンビーク ザンベジ川に架かる吊橋の補修

著: Antonio Reis, Claudio Baptista 訳: プレストレストコンクリート海外部会

モザンビークのテテを流れるザンベジ川に架かる吊橋が 1965 年から 1970 年の間に建設された。全長 720 m で独特な構 造系をもつ多径間吊橋である。1999 年から 2005 年の間の点検で次の 3 つの大きな問題が発見された。床版の幾何学的な 誤差によってハンガーシステムにかかる不均等荷重,疲労と腐食によるハンガーロープの劣化,ハンガーロープによって 吊られた横梁の過大な回転によるコンクリートへの損傷である。本報告では,交通荷重の増加の下で橋の補修と寿命を延 長させるためのもっとも重要な設計案と解決策を提示する。

1. はじめに

1960年代中頃にエドガー・カルドゾ教授によって最初 に設計されたこの橋は、独特な構造系を有する。設計の ねらいは、三角形の吊機構によって吊られ、フレキシブ ルなコンクリート床版をもつ多径間吊橋の可能性を示す ことであった。図 - 1 に建設中の横梁のハンガーシステ ムを示す。

図 - 1 建設中の横梁

本構造は当初の設計思想を満足していたが、供用して 30年が経ち、主に維持管理不足と年々驚くほど増加して いるトラック荷重により、ハンガーシステムにおける疲 労の問題とコンクリートへの損傷が現れた。1995年から 2005年の間に実施した点検で大きな問題が発見され、そ の橋は数年間厳しい交通規制の下で管理された。補修・ 補強設計は、2006年から2008年の間に行われ、ハンガ ーロープの完全な取替えとコンクリート床版の補強は、 2009年から2011年の間に、重交通状況の下で実施され た。

1.1 構造系

本橋は、4つの主塔によりそれぞれ180mに分けられた3つの中間支間と、それぞれ90mの2つの側径間をもつ全長720mの多径間吊橋である(図-2)。本橋の横断面は、それぞれ3.6mの2本の車線と上下線とも1.85mの2本の歩道を含み、全幅11.6mである(図-3)。コンクリート床版は、プレストレストコンクリートで、長さ10m、幅11.6mの72のプレキャスト部材でできており、傾斜したハンガーロープから10m間隔で

図 - 2 橋梁の概観

吊られたコンクリート横梁で支えられた格子状の形状で ある(図-1および図-2)。それぞれの一区画の床版の 構成は,桁高変化する9つのプレキャストポストテンシ ョン縦桁によって構成される。縦桁は4つの現場施工の 横桁と厚さ150mmの鉄筋コンクリート床版によって, 横方向に接続される(図-4)。横梁の上で一区画ごとに 伸縮継手が設けられ,橋全体で73の伸縮継手がある。 この床版は活荷重に抵抗し,ハンガーロープに吊られた 横梁へ荷重を伝達する。これらの横梁はまた,桁高変化 を有するプレキャストポストテンション梁である。2本 のメインケーブルが懸架システムを形成している。公称

プレストレストコンクリート

直径 170 mm のメインケーブルは、直径 5 mm の亜鉛メ ッキ鋼線(引張強度 f_{pu} , k = 1800 MPa; ヤング係数E =195 000 N/mm²)を 146 本束ねた 7 本のケーブルで作られ ている。ハンガーロープは、直径5mmの亜鉛メッキ鋼 線を46本束ねたケーブルと、メインケーブルおよび横 梁を繋ぐ鋳鉄製クランプとで構成されている。ハンガー ロープは10m間隔で床版と接続されている。構造シス テム全体で風の影響に対する剛性を確保するため、2本 の補剛ケーブルは同一放物線状の床版を有する橋の全長 にわたって採用され、橋台に定着されている。これらの ケーブルは橋台に定着された後、横方向の主梁と接続さ れた。公称直径66mmのケーブルは、直径5mmの亜鉛 メッキ鋼線146本で作られており、それぞれ1150kNで 緊張された。メインケーブル・斜めのハンガーロープお よび補剛ケーブルが、橋の全体的な挙動に必要な剛性を もたらすトラスシステムを構成している。橋台は、石で 満たされた鉄筋コンクリートボックスである。それらは 縦方向の逆 V 型をした PC 構造物を通じて、補剛ケーブ ルとメインケーブルを定着している。主塔は、鉄筋コン クリート製で2本の変断面の円柱と水平ブレースで構成 されており、図-2に示すような横方向の骨組構造とな っている。

1.2 点 検

点検は, 1999年にはジンバブエによって行われた。また, 2005年にはポルトガルによって行われ, 3つの大きな問題点が認められた。

- 1. 幾何学的な誤差によってハンガーシステムにかか る不均等荷重
- 2. 疲労や腐食によるハンガーロープの損傷
- 3. 横梁の過剰な回転によるコンクリートの損傷

補修工事の主な項目は、横梁の回転の抑制,支承交換 (1152基),伸縮装置の取替え(73箇所),コンクリート の損傷の補修および懸架システムの交換(288箇所)で ある。

1.3 ハンガーロープにかかる不均等荷重

ハンガーロープに対する不均等荷重の影響は、水平で

ない床版の線形からも明らかであった。解析結果による 理論的な橋軸方向のズレは,最大340 mm に達し,上流 側と下流側の最大値の差はおおよそ100 mm あることが 分かった。これらの差は,コンクリートのひび割れの原 因となる床版のねじれを発生させた。ハンガーロープに かかる不均等荷重は,上部のハンガーロープの定着具を 中心とした軽微な滑りによるものである。ハンガーロー プの荷重の測定は2007 年の4月に行われた。その結果, 構造モデルの検証と懸架システムの荷重分配の経路の検 証が可能となった。解析結果と測定結果の差の平均値 は,おおよそ15.3%で標準偏差は21.7%であることが 分かった。また,偏差の最大値は64%であった。

1.4 疲労や腐食によるハンガーロープの損傷

ハンガーシステムは、疲労による損傷や腐食、および 定着部の鋼線と鉛被覆との結合不足による定着具の変位 に対して不十分な構造であることが判明した。ハンガー ロープには表面的な腐食が散見され、亜鉛メッキにより 防食加工されたハンガーロープのワイヤーはいくつかの 箇所で破断していた。応力変動を受け易いハンガーシス テムの腐食が疲労破壊を加速させた(図-5)。

図-5 ハンガーシステムの腐食下における疲労破壊

1.5 コンクリートの損傷

ハンガーロープに吊られている横梁の回転によるコン クリートの損傷が多く見受けられた。横梁は活荷重時に (図 - 13)床版と横梁間に据えられている支承の移動に よって大きく回転するので、その結果として損傷が生じ た(図 - 6)。補修の大部分は不均等な車両荷重によって 起こる横梁の回転を拘束することに費やされた。

図-6 横梁上のコンクリート損傷

Vol.55, No.5, Sep. 2013

2. 懸架システム

2.1 幾何学的非線形解析

懸架システムの全体解析の一部分として幾何学的非線 形解析(大変形解析)を行った。ただし、材料物性は線 形とした。主ケーブルやハンガーロープの荷重を分析す るために大変形下での死荷重の影響を想定する目的で施 工方法による影響も考慮した。

車両荷重下で応力がゼロになるような、ハンガーロー プが特殊に傾いた状況において, ハンガーロープの疲労 が見受けられた。三角形の形状は鉛直にハンガーロープ を配置したときと比較して、鉛直方向の変位を抑えられ るが、その静的挙動はハンガーロープに圧縮をもたらす "トラス構造"の挙動に類似している。対称に荷重が載荷 されたとき. 主塔方向に傾いたハンガーロープは主ケー ブルと釣り合うにつれてより堅固になる。それゆえ、そ の非線形性の影響が最小限となる。その結果、主塔と反 対方向に傾いたハンガーロープが無応力状態になる可能 性がある。無応力下でのハンガーロープの静的挙動は, 床版の十分な強度が必要となるが、プレストレスをハン ガーロープに導入することで最小にできる。プレストレ スを導入する場合、設計者は床版の自重を増やし、ハン ガーロープの応力を増加させることのできるコンクリー ト床版を採用した。しかしながら、疲労の応力振幅を狭 めることはかなわなかった。橋台上にある一本目のハン ガーロープにとって、釣り合い条件を満たすため、 圧縮 力への抵抗性が必要であった。図-7に示すように、一 本目のハンガーロープは主ケーブルの変位をさらに安定 させなければならない。つまり主ケーブルを定着してい るコンクリート製のアームの変形を減らすことである。 解決策として、車両荷重下で結合部に圧縮力を確保する ため橋台上にプレストレスを導入した鋼管を1本目のハ ンガーロープとして用いた。

図 - 7 鋼管を用いたハンガーロープ

2.2 荷重モデル

動的増幅率1.2の450kNの三軸トラック,もしくは3kN/m²の等分布荷重と50kNの線荷重に耐えうるポル

トガルの基準 "RSEP-1960" に基づいて橋梁を設計した。 最新の規準では, RSEPはRSAにとって替わられており, 車両荷重を増やした以下のような荷重モデルを示してい る。

- ・幅員に4 kN/m²の等分布荷重と 50 kN/m の線荷重
- 軸あたり 200 kN の 3 軸トラック,つまり総荷重 600 kN (動的増幅率を含む)

補強設計において,実際の交通状況に即したものとし てRSA2の車両荷重モデルを1軸180kNの3軸と1軸 77kNの計4軸に変更した(図-8)。また,この車両荷 重を同時に載荷させた。一般に,集中荷重で床版の格子 部分の構造が決まる一方で,等分布荷重と線荷重で懸架 システムが決定されることが分かった。

図 - 8 RSA2の車両荷重モデル

3. ハンガーシステム

設計により、重交通下におけるハンガーロープの完全 な取替えをすることとなった。ハンガーロープには、公 称直径 55 mm, 2090 mm² の断面積の高張力鋼ロックド コイルケーブルが採用された。

3.1 疲労モデルおよび載荷スペクトル

サスペンションシステム (ハンガーロープとメインケ ーブル)の疲労の照査のため,600 kNの RSA 規格のト ラックと同様の車両で荷重強度を減じたものが荷重とし て採用された。この荷重低減はスペイン規格 RPX-95 に 準拠してなされた。RPX-95 疲労車両は,総重量 390 kN の RSA 車両と同様の荷重分配と動的増幅率 1.2 を有して おり,468 kN に相当するものである (RSA 車両の78 % に相当する)。

この疲労荷重モデルは、1999年4月に行なわれた交通 調査によって、さらに適切なものであることが確認され た。平均トラック荷重は420kNであり、標準偏差は 60kNであることが分かった。総重量600kNを超過する 車両は確認されず、前輪と後輪との軸間距離は3mを大 きく超えるものであった。したがって、地域性を考慮し た実際に橋梁上を走行する車両荷重は、設計荷重である 600kNよりも確実に小さなものである。

3.2 疲労の照査

疲労の照査は,幾何学的非線形を考慮した解析に基づいて行われた。各ハンガーロープについては,最大応力, 最小応力およびこれに対応する応力振幅(Δs_E)を求めるため,影響線を利用して疲労荷重を載荷した。最大 300 台/日の交通量は,交通量調査に基づき,載荷回数 は RPX-95 によって定義される 7×10⁶ 回とした。

疲労耐力は, Eurocode 3 Part 1.11 に規定される応力曲 線によって求められた。

$$\Delta S_N = \Delta S_{2 \times 10^6} \left(\frac{2 \times 10^6}{N} \right)^{\frac{1}{2}}$$

樹脂ソケットを有するロックドコイルケーブルの 2× 10⁶ 回に対する応力振幅の制限値が $\Delta s_2 \times 10^6 = 150$ MPa であることを考慮して, Eurocode 3 Part 1.11 の式より, 7 × 10⁵ 回に対する疲労限度は, $\Delta s_{7\times 10^5} = 195$ MPa とな る。

ハンガーロープの疲労の照査は、次の手法に基づいて 行った。

$$\Delta S_{Ed} \leq \Delta S_{Rd} = \frac{\Delta S_N}{g_{VE}}$$

(設計応力振幅 ≤ 設計疲労強度)

部分安全係数 g_{MF} = 1.35 を採用した結果, Δs_{Rd} = 144 MPa となった。メインケーブルに関しては, $\Delta s_{2\times10^6}$ = 160 MPa, g_{MF} = 1.5 とした結果, 7×10⁵ 回に対する設計 疲労強度は 139 MPa となった。

3.3 ロックドコイルハンガーの実物大疲労試験

ロックドコイルハンガー(供試体長はソケットを含み 3.625 m)の疲労試験が行われた。無応力状態を与えるための最小応力は 5 MPa として試験を実施した。2×10⁶回の繰返し回数に対し、 $\Delta s_c = 150$ MPa で実施した結果、素線の破断や永久変形は見られなかった。

疲労試験の後,供試体は引張試験に供され,3456 kN の破断荷重を示した(最小の設計破断荷重 N_{sd, max} = 3077 kN)。

3.4 ハンガーロープの鋳鉄製定着具の実物大試験

メインケーブル上のハンガーロープの新しい定着具 は、鋳鉄製である(G24Mn6 + N, EN1029:2005)。定 着具は、ハンガーロープの設計破断荷重($N_{sd,max}$ = 4 844 kN)の150%まで載荷された。載荷後に鋼製定着具を検 査した結果、ひび割れや変形は見られなかった(図 - 9)。設計で用いられている摩擦係数0.1の妥当性確認 のため現場試験が実施された。現場試験は、図 - 10の ように行われ、最小でも0.26の摩擦係数を示した。

図-9 鋼製定着具の引張試験

3.5 ハンガーロープの交換作業

すべてのハンガーロープや吊金具,定着具の完全交換 作業が,供用状態で行われた。交通量を許容するために,

図 - 10 鋼製定着具の現場摩擦試験

特殊な仮ハンガー構造が設計された。図 - 11 に仮ハン ガー構造を示す。仮ハンガー構造によって横梁を垂直に 吊ることによって,斜めハンガーの交換作業を可能にし た。ハンガーロープを床版の鋼製ダクト(径 80 mm)に 通して,現場にて樹脂被覆されたソケットに接続した。 床版の形状に適用できるように,特殊ねじ部付きソケッ トをハンガーに使用することで,供用期間中の変形に対 応できるようにした(図 - 12)。

図 - 11 仮ハンガー構造

図-12 桁下の特殊ねじ部付きの下端ソケット

4. コンクリート床版

4.1 補強構造

橋梁の補強においてもっとも適切な構造形式を設定す るために,詳細検討が行われた。主たる問題は横梁の不

Vol.55, No.5, Sep. 2013

安定性に関連しており,活荷重偏載下で吊点部において 過度の回転変形が生じた。

数値解析結果より,回転変位が活荷重の HB 25 のトラ ック荷重(4×250 kN)下で約 3.7°となった(図 - 13)。 補強構造(図 - 14)は,横梁の底面と主桁を鋼管(CHS 139.7×5級)で連結した。本構造における最大作用力は 250 kN(SLS:供用限界状態)である。構造解析はまた, 横梁のせん断抵抗不足を明らかにした。これらの横梁が 単純支持されており,横梁の吊点付近を補強しなければ ならなかった。さらに,補強構造は回転変位を拘束する ことで,横梁に対するねじりの影響を高めたことが明ら かにされた。

図 - 14 補強構造(側面図)

採用した補強構造は、図-15に示すように、横梁ま わりに鋼板で固定・結合した構造にすることで、ねじり とせん断力によって生じた合成せん断応力度を吊支持点 に伝達させることができた。せん断抵抗を高めるために、 横梁のウェブをコンクリートで巻立て補強した。

4.2 補強構造の現場試験

荷重載荷試験が数日にわたって行われた。補強構造が ある場合とない場合で,以下の2つのケースに分けて回 転変位を測定した。

- 3つの異なる速度(5 km/h; 10 km/h: 15 km/h)を 持った 368 kNのトラック荷重
- ・通常状態の実交通荷重。夜間の交通規制で大型トラックが橋の入口に集まるため、朝一番の時間帯を重交通の代表とした。

図 - 16 および図 - 17 は, 試験のトラック荷重によ る横桁の回転変位を表す影響関数を示す。この回転変位 は,速度 5 km/h の移動式クレーンの傾斜計で測定された。 トラック荷重によって生じた 2°の回転変位は,補強した

図-15 補強構造(正面図)

構造によって,ほぼ除去された(図-17)。実際の交通 荷重の測定においても,回転変位の低減が重要であり, とくにこれが最大ピークのとき,たとえそのピーク値が 小型自動車の高速走行によって記録されたものでも,重 要である。

5. おわりに

補強した橋梁は,2011年1月から無事に供用されている。構造の観点から,この橋梁は大変特徴的であると考 えられる。構造物の寿命を延長することが,設計段階に おいて大きな課題であった。

【2013年8月5日受付】