報

広帯域超音波法を用いた PC グラウトの充填調査

濵岡 弘二*1・青木 圭一*2・原 幹夫*3・木下 尚宜*4

PC グラウトは、PC 構造物のプレストレスを維持し、コンクリートとの一体性を保持するための重要な要素である。そのため、現在は厳格な管理の下で確実な PC グラウトの施工が行われているが、過去には材料や施工に起因した PC グラウトの充 填不良の事例が多々あり、PC 鋼材の腐食・破断という致命的な損傷にまで進展している事例も報告されている。これらに対応するため、非破壊検査手法を用いた PC グラウト調査手法の研究が数多くなされてきた。その一つとして、通常の超音波法 と比べて幅広い周波数を使用する広帯域超音波法による PC グラウト充填調査を行った。本稿では、広帯域超音波法を適用した PC グラウト充填調査システムの概要と調査結果について報告する。

キーワード:非破壊検査,広帯域超音波法, PC グラウト

1. はじめに

現在は、グラウト材料と施工方法の開発が進み、厳格な 管理の下で確実な PC グラウトの充填が行われている¹⁾。 しかし、過去に施工された PC 構造物では、PC グラウト 充填不良に起因する PC 鋼材の腐食や破断によって、PC 構造物の耐荷力および耐久性が損なわれた事例が報告され ている²⁾。PC グラウトの充填不良の原因として、低性能 な材料の使用(ブリーディングの発生)、構造上の問題 (空隙率の小さいシースによる閉塞)、施工者の意識レベ ルの問題(PC グラウトの重要性の認識の低さ)などが考 えられ、これらの要因により充填不良の形態も異なってく る。

PC グラウトの充填不良に起因する損傷を防止するため, 既設 PC 構造物のメンテナンス技術の一つとして, PC グ ラウトの充填確認に関する非破壊検査の研究や試用が数多 くなされてきた。PC ケーブルのダクト内の残留空気やグ ラウトの閉塞などにより生じた未充填部を空洞ととらえれ ば,弾性波法や電磁波レーダ法などの非破壊検査手法でグ ラウトの充填の確認が容易にできそうに思える。しかし, PC ケーブルは鉄筋に囲まれた内部にあり,さらにグラウ トはダクトを形成するシースの中であり,調査は困難なも のとなる。そのため、PC グラウトの充填状況を確認する には、より高度な調査技術が要求されることとなる。現時 点で、PC グラウトの充填調査に適合するものとしては、 電磁波レーダ法(マルチパスアレイレーダ法)³⁾、衝撃弾 性波法(インパクトエコー法)⁴⁾、X線法⁵⁾,超音波法(広 帯域超音波法)⁶⁾があげられる。これらの手法は、対応で きる部材厚、かぶりの深さやシースの材質にそれぞれ差異 があることから、適用に際してはその特性に注意が必要と なる。

本報告では,通常の超音波法と比べて幅広い周波数を使 用する広帯域超音波法を適用した PC グラウト充填調査に ついて,その原理,システムの概要および調査結果を基に 既設 PC 橋梁での効果について記述する。

2. 広帯域超音波法によるグラウト充填探査

2.1 探査原理

広帯域超音波法を用いた PC グラウト充填調査では,シ ース直上のコンクリート面に接触媒質を介して探触子を配 置する形で行う。発信探触子から各周波数帯域の超音波を 入力し,受信探触子でシースからの反射波を受信して,そ

*1 Koji HAMAOKA

(株)日本ピーエス 研究開発部 部長

*2 Keiichi AOKI

(株)高速道路総合技術研究所 道路研究部 橋梁研究室 室長

*³ Mikio HARA

(株) 日本ピーエス取締役執行役員 技術総括

*4 Takanori KINOSHITA

(株) H&B system 計測技術部 部長 の特性値の差でグラウトの充填状況を判定する。

図 - 1 に、コンクリート内の超音波伝搬状態の模式図 を示す。超音波は異なる物質の界面で反射する特性があ り、空洞が存在すると、そこでほぼ全反射して大きな反射 波が発生する。一方、密実であると、反射率が低いため反 射波は小さくなる。さらに、シース反射波は高周波帯域の 波が支配的であるため、グラウト充填不良の場合は高周波 帯域の波を受信し、充填シースの場合は高周波帯域の波は 小さく低周波帯域の波が支配的となる。

従来の超音波法では、単一周波数の入力波からの情報を 使用しており(図-2)、反射波には粗骨材や鉄筋からの 反射波(妨害波)が混在し、明確な判定は困難であった。 広帯域超音波法では、5~150 kHzの帯域の広い周波数を 使用し、得られたデータから妨害波をフィルタリングする こと(図-3)で、シースからの情報を読み取る手法を用 い判定している。

図-2 従来の超音波法の周波数

図-3 広帯域超音波法の周波数

2.2 使用機器

測定機器の写真を写真 - 1 に,装置の仕様を表 - 1 に 示す。PC グラウト充填探査では,写真 - 1 に示す超音波

写真 - 1 広帯域超音波測定機器

表 - 1 広帯域超音波装置の仕様

探傷周波数範囲	$2.5~\mathrm{kHz} \sim 1~000~\mathrm{kHz}$
探触子印加電圧	$1 \sim 500 \mathrm{V}$
增幅度	$20 \sim 60 \text{ dB}$
時間軸サンプリング数	4000点(オプション16000点)
サンプリング周波数	$78~{ m kHz} \sim 10~{ m MHz}$
パワーサプライ	AC100 V
本体外観寸法	$200 \text{ mmmW} \times 230 \text{ mmD} \times 72 \text{ mmH}, 2.8 \text{ kg}$
探触子(発信·受信)	ϕ 76 探触子, ϕ 95 mm × 60 mmH

測定器と解析ソフトを使用する。超音波を発信および受信 する探触子は φ76 mm の大型のものを用い,かぶりの深 い位置での探査を可能にしている。

2.3 探查手法

(1) 多点計測(妨害波の処理)

コンクリートに超音波を入力すると、シース反射波に加 えて、部材厚反射波や鉄筋などからの反射波も受信され る。さらに、一般的に PC ケーブルは鉄筋に囲まれた内部 にあることが多く、シースからの反射波は、鉄筋からの反 射波と比較して小さい傾向にある。そのため、これらが混 在する波形からシース反射波のみを抽出することは難し く、グラウトの充填判定が困難となる。この対策として、 多点計測を行ってシース反射波を大きくしている。

多点計測の計測方法を図 - 4 に, 多点計測の計測状況 を写真 - 2 に示す。

多点計測では,探査対象ケーブル上で発信探触子および 受信探触子をケーブルに沿ってスライドさせ,異なった位 置で4回計測データを収録する。探触子はケーブル上を移 動するため,探触子とシースの相対位置関係は変わらない が,探触子と鉄筋の位置関係は各計測ごとに変化する。そ のため,それぞれの波形を加算すると,シースからの反射

写真-2 多点計測の状況

波は卓越し,その他の妨害波は減衰する。この現象を利用 して,加算平均波を解析することでグラウトの充填判定を 行う。

加算平均波の一例を図 - 5 に示す。図 - 5 の左側はス ペクトル図を、右側は時系列図を表している。右側の No.1 ~ No.4 の波形が多点計測を行って得られた受信波で あり、それらを加算平均したものが No.5 の波形になる。 個々の受信波ではさまざまな妨害波が見られるが、これら を加算平均することにより、シース反射波と部材厚反射波 のみが際立ち、その他の妨害波が減衰している。

(2) 探触子間距離

受信探触子に到達する超音波には、前述している反射波 以外に、コンクリート表面を直接伝わってくる表面波があ る。対象ケーブルのかぶりが大きい場合は表面波と反射波 に時間差が生じるが、小さい場合は時間差が小さくなり、 これらが混在する。対策として図 - 6 に示すように、シ ースまでのかぶり厚が小さい場合は、探触子間隔を広くす ることで表面波とシースからの反射波を区分し、グラウト の充填判定を行っている。通常の計測では、シースまでの かぶり厚が140 mm 未満の場合は探触子間隔を 500 mm、 140 mm 以上の場合は 200 mm を目安としている。

- 2.4 解析方法
- (1) 波形処理

多点計測で得られた加算平均波を解析対象波としてい る。

図-6 探触子間隔と超音波経路

解析波形の概要を図-7に示す。図-7(a)は、加算平 均波の時系列図の例を示しており、図中の台形は窓関数を 示している。窓関数は、スペクトル分析に用いる関数で、 連続して移動しながら受信波の一部を切り出して周波数解 析を行う。図中の縦線のうち、1本目は切り出し開始位置 (シースからの反射波が受信された時刻)を示しており、2 本目は切り出し終了位置(窓関数の移動が終了する時刻) を示している。太線で示された窓関数は、切り出し位置が シース反射波起生相当時刻に達した時の窓関数であり、そ の中に示される波形は窓関数によって切り出された波形を 拡大表示したものである。図 - 7(b)の右側の図は受信波 の時系列図であり、1~4点目の波形は多点計測の各探査 点での受信波形を、5番目に示す波形は加算平均波を示し ている。左側の図は、加算平均波を周波数解析して得られ た受信波のスペクトル特性を表す図である。図のX軸は 周波数(音の高さ),Y軸は電圧関連値(音の大きさ),Z 軸は時刻(コンクリート表面からの深さ)を示している。 ここで、スペクトル強度は、加算平均波のスペクトルの最 大値を1として正規化(最大値に対する割合で表示)した 値である。

(2) 判定方法

グラウト充填不良の場合は、グラウトが充填されている 場合に比べて高い周波数帯域でピークが発生することか ら、このパターンの差異によりグラウトの充填判定を行う。

各判定の波形の例を図 - 8に示す。図 - 8(a)の波形は, シースかぶり深さ付近で,低い周波数帯域(40 kHz 以下) に大きなピークが確認できるため「充填(○)」と判定す る。図 - 8(b)の波形は、シースかぶり深さ付近で、図 - 8(a)の波形と比較して高い周波数帯域(70kHz 付近)に 大きなピークが確認できるため「充填不良(×)」と判定 する。図 - 8(c)の波形は、シースかぶり深さ付近で、低 い周波数帯域(40 kHz 以下)にピークが確認できるが、 シースかぶりよりも若干深い位置で高い周波数帯域 (70 kHz 付近)にもピークが確認できる。このような場合 は、「充填の確認に至らないもの(△)」と判定する。

図-8 広帯域超音波法の解析結果例

これまでの調査結果から、(○)・(×)の判定の閾値は シース内のグラウト充填率が90%程度のところにあると 考えられる。なお、充填の確認に至らない(△)波形は、 コンクリート表層部の劣化状況やその位置での鉄筋との位 置関係によって発生すると考えられ、微破壊削孔調査結果 と照合し最終的に判断することとしている。

図-8の波形図の中で,充填判定を行う周波数(シース反射波のピークが発生する周波数帯域)は、コンクリート強度、シースかぶり、シース径などによって若干変動するため、調査対象橋梁ごとに設定する必要がある。

2.5 適用条件

表 - 2 に,広帯域超音波法による PC グラウト充填探査 の性能的な適用条件を示す。この表に示した条件値は,現 時点での計測精度が保てる範囲であり,これらの値を超え て計測する場合は精度が低下していくことから,同一ケー ブルで複数箇所の計測を行い,複合的な判断を行うなどの 対応が必要となる。

表-2 適用条件

項目	適用条件			
シースの種類	鋼製シース, PE シース			
シース径	 <i>ϕ</i> 38 mm 以上			
シースかぶり厚	250 mm 以下			
ケーブル配置間隔	110 mm 以上			
鉄筋配置間隔	125 mm 以上			

また,計測位置の環境的な条件として以下があげられ る。

・計測箇所にひび割れ、ジャンカ、はく離などがない箇所

•コンクリートの劣化が極端に進行していない箇所

コンクリート表面に大きな凹凸がない箇所

•PC ケーブルのかぶりが一定である箇所

3. PC グラウト充填調査システムの概要

構築したシステムによる調査のフローを図-9に示す。

図-9 調査のフローチャート

本システムは、かぶりが深いケーブル位置の特定が可能 で、PC 鋼材に傷などの損傷を与えることのないグラウト 充填確認や PC 鋼材の状態確認が可能である技術で構築し ている。

3.1 設計図面上の PC ケーブルの位置出し

対象 PC ケーブルの設計図面上の位置の罫書きを実施す る。設計図面上の位置出しは、① 電磁波レーダによるシ ース位置出しを行う際の見落とし防止、② シース位置出 しを行った際のケーブル番号の確認を目的として行う。

3.2 電磁波レーダによる鉄筋および PC 鋼材の位置出し

既設構造物の場合, PC 鋼材の位置は他の鋼材との干渉 など施工上の理由や,施工誤差の影響により,設計図書に 表示されている位置に配置されていない可能性がある。広 帯域超音波法を用いて PC グラウトの充填調査を行うため には, PC 鋼材の正確な位置を把握することが探査精度に

写真 - 3 PC ケーブル位置探査状況

大きく影響することから、電磁波レーダを用いて PC 鋼材 および鉄筋の位置探査を行う(写真 - 3)。

使用する電磁波レーダは,高性能・高精度レーダシステムのストラクチャスキャン(GSSI社,SIR-EZ)を使用する。この電磁波レーダは,従来のものと比べ,多重反射波が少なく密な配筋や二重配筋の判定を迅速に行うことができる。探査結果例を図 - 10に示す。図中の実線が鉄筋, 点線がシースを示している。このように,鉄筋の背面や鉄筋間に配置されているシースを明確に識別できる。

3.3 広帯域超音波法による PC グラウト充填探査

探査対象 PC ケーブルについて,広帯域超音波法を用いた PC グラウト充填探査を行う(写真 - 4)。

写真 - 4 グラウト充填探査状況

3.4 超音波ドリルによる削孔調査

広帯域超音波法では、シース反射波の周波数特性でグラ ウトの充填状況を判定する。このとき、充填と充填不良と の閾値(周波数)はコンクリートの強度、シースかぶり 厚、シース径などにより若干変化する。そこで、広帯域超 音波法のキャリブレーション(整合性確認)を目的として 超音波ドリルによる削孔調査を行い、探査精度の向上を図 っている。また、削孔調査では PC グラウトや PC 鋼材の 劣化状態やシース内の滞水の有無なども併せて確認する。

超音波ドリルを写真 - 5 に, 削孔後のシース表層部を 写真 - 6 に示す。超音波ドリルは、コンクリートの切削 に適した周波数の超音波振動をドリルの刃先に与え、切削 抵抗低減効果の働きを利用して削孔する構造となってい る。そのため、鋼材に対しては極端に切削能力が低下し、 コンクリート内部の鉄筋や PC 鋼材を傷つけることなく削 孔が可能となる。削孔調査結果の一例を写真 - 7 に示す。

写真 - 5 超音波ドリル 写真 - 6 シース表層部

4. 既設 PC 橋における調査結果

既設 PC 橋 66 橋の主ケーブルを対象として, PC グラウト充填調査を実施した。調査結果の一覧を表-3に示す。 表では広帯域超音波法の結果と削孔調査結果をマトリック スで表示している。なお, (△) 判定は充填または充填不

(a) 充填例

(b) 充填不良例

写真 - 7 削孔調査結果の一例

表-3 調査結果の一覧

PC 鋼材 種類	調査箇所の内訳		削孔調査結果			軟合束	
	箇所数	広帯域の結果		充填	充填 不良	金合 箇所数	登古平 (%)
PC 鋼よ り線	156	0	70	70	0	70	100.0
		\bigtriangleup	82	79	3	-	-
		×	4	4	0	0	0.0
PC 鋼線	51	0	25	25	0	25	100.0
		\bigtriangleup	4	4	0	-	-
		×	22	4	18	18	81.8
PC 鋼棒	123	0	44	44	0	44	100.0
		\bigtriangleup	64	50	14	-	-
		×	15	3	12	12	80.0
合計	330	0	139	139	0	139	100.0
		\bigtriangleup	150	133	17	-	-
		×	41	11	30	30	73.2

良が明確に判定できないことから,整合箇所数および整合 率から除外した。

この結果では、広帯域超音波法によるグラウト充填調査 を行った場合、充填確認精度は高いが、充填不良検出精度 はそれより低い。これは、鉄筋などの反射波が高い周波数 域で干渉してくる影響と考えられるが、PCケーブルの健 全度評価としては安全側になるといえる。

5. おわりに

5.1 実構造物の調査で得られた成果

非破壊検査手法を用いたコンクリート構造物の調査で は、その結果と実態との整合性が大きな課題となる。新し い非破壊検査手法を実構造物で検証する機会は少ないう え、実際の調査の中では実態の確認が難しい場合が多く、 調査手法の精度をあいまいなものとする傾向が強くなる。 実験室での成果を実構造物にどの程度適合できるかを検証 することは重要であるが、困難な状況にあると思われる。

広帯域超音波法を適用した PC グラウト充填調査システムでは、削孔時の危険性のない超音波ドリルによる微破壊 調査と組合せたシステムとすることで、充填確認調査結果 と PC ケーブル内の実態との整合性を確認し、調査結果の 信頼性を確保した。さらに試料数は少ないものの、微破壊 調査を組込むことでグラウト充填確認に加え、PC 鋼材の 現況も観察でき、PC ケーブルの健全度推定の一助になる と考える。

5.2 今後の課題

今後の課題として、以下があげられる。

- ① 現時点では、本手法でグラウトの充填率を判定する ことは困難である。実験レベルでは、充填率が50% の場合、半分程度の充填状況であるという判定は可 能であることが確認されている。今後、多くのデー タ収集と分析を行うことで、充填率の判定を可能と する必要がある。
- ② PC 構造物毎の周波数特性値(充填と充填不良の閾値) を特定するため、少数ではあるが超音波ドリルによ る削孔調査を実施している。しかし、シース内への 通気を伴うことから、既調査結果から判定の閾値変 動を見極め、削孔調査を行わない方向の検討が必要 である。
- ③本手法による充填不良検出精度は、充填確認精度より低い結果となっている。これは、鉄筋などの反射波が高い周波数域で干渉してくる影響と考えられる。本手法の精度を向上させるためには、上述した影響を除去し、充填不良検出精度の向上を図る必要がある。
- ④ 全判定数に占める(△)判定の割合が高くなっている。これは、コンクリート表層部の劣化状況やその位置での鉄筋との位置関係によって発生すると考えられる。今後、蓄積された多数のデータを検討することで、(△)判定を減らす必要がある。
- ⑤本手法では、接触媒質を介して探触子を設置するため、コンクリート面に若干計測跡が残る場合がある。 またコンクリート面の凹凸などが計測の大きな障害となる場合があることから、多少の凹凸に対応できるドライ探触子の開発が必要と考えられる。

これらの課題を解決することで, PC 橋の維持管理技術 が向上し,ひいては PC 橋の信頼性の向上に繋がると考え られる。

参考文献

- 池田尚治, 手塚正道, 二井谷教治, 細野宏巳: PC グラウトの 設計施工指針の改定について、プレストレストコンクリート, pp74-83, Vol.55, No.3, 2013
- 2) 玉越隆史, 平賀和文, 木村嘉富: PC 鋼材の腐食損傷への対応事 例-妙高大橋のグラウト未充てんと鋼材腐食の調査-, 土木技 術資料 54-5, pp50-51, 2012
- 3)森島弘吉、阿部浩幸、青木圭一、原 幹夫:電磁波レーダ法に よる内ケーブルのグラウト充てん性検査、プレストレストコン クリート、pp.71~78, Vol.47, No.3, 2005
- 4) 鎌田敏郎: PC 構造物のメンテナンスにおける非破壊検査, プレ ストレストコンクリート, pp.51~58, Vol.45, No.1, Jan. 2003
- 5)藤井 学,宮川豊章:PC グラウト充てん状況の非破壊検査法, 土木学会論文集,第402号/V-10, pp.15~25, 1989
- 6) 青木圭一,本間淳史,原 幹夫:非破壊検査(広帯域超音波探査法)による内ケーブル PC グラウトの充てん検査,第13回プレストレストコンクリートの発展に関するシンポジウム論文集, pp.137~140,2004.10

【2014年9月3日受付】