# 研究報告

# PC 道路橋における非破壊検査の活用

― 高速道路橋における実施事例 ―

青木 圭一\*

NEXCOでは、従来からの検査(川上管理)に加えて種々の非破壊検査を要領化し、いわゆる川下管理を導入するなど、積極的に検査技術の精度向上や検査の省力化を試みている。本稿では、コンクリート構造物や PC 構造物への非破壊検査として、反発硬度法によるコンクリート強度検査、電磁波、電磁誘導法、超音波法による鉄筋かぶり検査、マルチパスアレイレーダ法や広帯域超音波法による PC グラウト充填検査、漏洩磁束法(MFL 工法)による PC 鋼材破断検査を運用または開発を行っている。これら非破壊検査技術の概要および精度、適用状況などについて紹介するとともに、今後の非破壊検査適用の課題について紹介する。

キーワード:反発硬度法、かぶり測定、マルチパスアレイレーダ法、広帯域超音波法、漏洩磁束法

## 1. はじめに

NEXCOが管理する高速道路の橋梁は,平成23年度末 で約18000橋(上下線・構造形式ごとにカウント),連数 では30000連を超え,上下線別の橋梁延長では2700km を超えるまでに至っている。橋梁の平均年齢は30歳に達 しようとしており,高齢化すなわち老朽化が今後の大きな 懸念材料となりつつある。

NEXCOでは、本年1月に発表された「高速道路資産の 長期保全および更新のあり方に関する技術検討委員会(委 員長:藤野東京大学特任教授(当時))」の報告書<sup>1)</sup>にあ るように、橋梁の大規模更新・大規模修繕を実施していく こととしており、劣化・損傷している橋梁に対して、大規 模更新として RC橋の架替え約200橋, RC床版の取替え 約2000橋,予防保全として約10000橋において高性能床 版防水を施工し、今後の維持管理の効率化を図ることとし ている。

一方で,橋梁の健全性を把握するうえで,目視による点 検では把握しきれない損傷や欠陥も存在するため,大規模 更新・修繕を実施したとしても,重大な事象が今後におい て発症しないとはいい切れない。このため,橋梁の健全性 把握のための調査,すなわち,非破壊検査が今後の維持管 理において重要なポイントとなると考えている。

本稿では、NEXCO におけるコンクリート構造物や PC



\* Keiichi AOKI

(株) 高速道路総合技術研究所 道路研究部 橋梁研究室長 構造物における非破壊検査の適用状況,今後望まれる非破 壊検査,非破壊検査の維持管理への適用について述べる。

#### 2. 新設橋への非破壊検査の適用状況

NEXCO(旧JHを含む)における非破壊検査の適用は 新しいことではなく,各現場の判断で適用されてきた。た とえば,橋梁拡幅工事における既設コンクリート構造物に おける鉄筋位置の調査,コンクリートのひび割れ深さの調 査,ジャンカなどの調査などで非破壊検査が適用されてき た。しかし,基準・要領として整備されたのは比較的新し く,平成12年のコンクリート施工管理要領<sup>2)</sup>において, コンクリート構造物へ反発硬度法によるコンクリートの強 度管理,RCレーダによるかぶり測定が規定されたのが最 初である。

また, PC グラウト充填状況においても, 施工管理のみ ではなく非破壊検査による適用を図っているところであ る。

以下,コンクリート構造物,PC構造物へのコンクリート強度とかぶり測定への非破壊検査,PC グラウト充填状況の非破壊検査の適用について述べる。

#### 2.1 コンクリート強度とかぶり

コンクリート構造物の品質検査では、試験体によるコン クリート圧縮強度測定およびコンクリート打設前の配筋・ 型枠検査時に鉄筋かぶりの検査が従来から実施されてい る。これらは、いわゆる川上管理と呼ばれるものであり、 施工プロセスを検査することで、完成したコンクリート構 造物が適切か否かを確認する検査方法である。この方法で は、コンクリートの締固めや養生が適切に実施されたか、 かぶりが最終的に適切に確保されているかの100%の保証 はできない。従来からの検査方法は、施工が確実に、丁寧 に行われることを大前提として、かつ、施工会社側および 監督者側が適切に施工状況をも検査してこそ成り立つ検査 方法であった。

しかし,人手不足や経験の浅い技術者が監督することな どから適切な施工状況の検査が困難となることが危惧さ

# ○ 特集 / 研究報告 ○

れ,また,維持管理の時代へと突入することから,負の遺 産を残さない方策を確立する必要があり,そこで,導入さ れたのが,いわゆる川下管理手法である反発硬度法による 実構造物の圧縮強度測定および RC レーダによるかぶり測 定である。

反発硬度法によるコンクリートの強度や密実性の検査で は、従来から用いられているシュミットハンマーなどを用 いて強度推定を行う(写真 - 1)。強度推定には建築学会 などから強度推定式が提唱されているが、実強度と必ずし も相関が一定でない。このため、強度推定を行って検査す るのではなく、不良検出という観点から、規準供試体と実 構造物の反発度を比較し、実構造物が基準供試体の85% 未満であれが不合格とする方法を採用している。

これは、全面的な川下管理ではなく、川上管理を行いつ つ川下管理による抑止効果を期待したもので、データ収集 を行い非破壊検査の精度向上を図る予定である。このた め、現段階での非破壊検査の頻度は、おおむね橋梁延長 10mに対して3箇所の測定頻度としている。



写真 - 1 反発硬度法による検査状況

また,鉄筋のかぶり検査においても,配筋検査や型枠検 査である川上管理を主体とし,電磁誘導法や電磁波法,超 音波法によるいわゆる川下管理(写真 - 2)を併用する方 法を採用している。



写真 - 2 電磁波法によるかぶり検査状況

実構造物への非破壊検査の適用性確認試験において,非 破壊検査による計測値と実構造物をはつりとって調査した かぶり値の関係は,その測定機器によりばらつきがあるの が実態である(図 - 1)。このため,現状の非破壊検査測 定機械では,測定値が実かぶりと同などの値ではなく,あ る基準値を設定する必要があるのが現状である。NEXCO では,最小かぶり値に施工誤差(+10 mm)を考慮したも のを設計値としており,これも加味し非破壊検査による閾 値としては,最小かぶりの80%未満を不合格とする検査 基準としている。また,かぶり測定の非破壊検査の適用頻 度は,コンクリート強度のものと同程度で,橋梁延長 10 m に対して,おおむね3 か所程度であり,全面的な展 開ではなく,抑止効果を期待した程度の検査となってい る。今後,同時に測定機器の精度向上も望まれる課題であ る。



図 - 1 非破壊検査機器の違いによる誤差

#### 2.2 PC グラウトの充填度測定

1985年の英国 Ynas-Y-gwas 橋の落橋などを起因とした PC グラウト充填不足に関する課題において、平成 11 年当 時,旧日本道路公団では、PC グラウトを用いる内ケーブ ル工法を禁止とし、外ケーブル工法の採用、またはプレグ ラウト PC 鋼材を用いることとした。これと同時に、PC グラウトの充填状況を施工完了後に確認できる方法の検討 に着手し、平成 16 年に非破壊検査を適用した PC グラウ ト充填検査を導入した。その方法は、電磁波による方法(マ ルチパスアレイレーダ)と超音波による方法(広帯域超音 波)の2種類である。

#### 2.2.1 マルチパスアレイレーダ

(1) 概 要

マルチパスアレイレーダ(以下, MPA レーダと称す) は、非破壊検査手法の一つである電磁波法の原理を応用し た技術である。

電磁波法とは、地中などに送信された電波が周囲の雰囲

気と電気的特性の異なる物質の境界で反射波を生じる性質 を利用して調査を行うものである(図-2)。具体的には, アンテナ部から対象物に向かって数ns(×10°sec)ごと に波長の短いパルス(モノサイクルパルス)を送信する と,対象物内の異物の境界面で反射され,アンテナに戻っ てくる。この反射波を受信し,アンテナ位置・時間・反射 波の分布の関係からシース内の空洞を求めるものである。



図-2 レーダ探査の原理

電磁波法では、1対の送受信アンテナを用いる方法が一 般的であるが、この MPA レーダでは送受信アンテナを多 極化したアレイアンテナを採用、さらに1つのアンテナか ら発信された電波を複数のアンテナで受信可能なマルチパ ス(多経路)方式により、多くの情報を正確に得ることが 可能になり、一度に多くの情報を多角的に取得することで 図-3に示すように、データの3次元表示が可能で、こ れによりコンクリート内部状況を直感的にイメージできる 結果を得ることが可能である。



図-3 3次元表示例

また,従来のX線による画像撮影などと異なり,計測 結果が数分の解析で表示できるため,現場でのPCグラウ ト充填の検査を可能とするものである。なお,鉄や水など は電磁波を吸収しやすく,その境界面で全反射し,それ以 下の情報が得られない特性をもつ。よって、シース管が鋼 製の場合や,計測対象物の直上に水の層や鉄板などがある 場合,コンクリート内に金属繊維が混入されている場合な どは適用できない。以上より,本検査手法を用いた内ケー ブルグラウト検査の適用対象は,ポリエチレン製シースを 用いた構造物に限定され,検査面および内ケーブル直上に 鉄などの電磁波に影響する障害物が存在しないことが条件 となる。

## (2) 検証と機器の仕様

用いる MPA レーダの主な仕様は、最大周波数約5 GHz

の電磁波を発信できる送信・受信それぞれ 16 素子(計 32 素子)のアレイアンテナにより構成され,最大探査深度は 約 20 cm,計測ピッチは 1 cm,探査幅は 50 cm/回である (写真 - 3)。



写真 - 3 レーダ装置

本機器を導入するにあたって,供試体および実橋におい て,その適用性,PC グラウト充填検査の評価を行ってい る。

供試体実験においては、版厚 350 mm の鉄筋コンクリートにポリエチレン製シース φ93 mm を配置し、使用 PC 鋼材は 12 φ 15.2、グラウト充填率をそれぞれ 0 %から 100 %まで変化させて行っている。その検証結果の一部を図-4に示す。計測結果は、3 次元の立体映像として再現され、任意の角度からの視点で画像表現できる。本検査では、図-4に示すように 3 次元立体画像を平面図(上面からの透視画像)と側面図(断面方向からの透視画像)として表現し、側面図からグラウト充填の様子(空隙の有無)を確認することとした。



計測の結果,充填率0%~90%以下についてケーブル 内の空隙からの反射が確認できる。ただし,充填率90% を超える場合については,反射レベルが弱く,判別が不可 能であった。このため,画像による検査の実用レベルは, 充填率90%程度までが限界と思われる。充填率の定量的 な把握については,現状では確認できるデータ取得までに は至っていない。

実橋での検証は、平成15年当時施工中であった新東名 高速道路朝比奈川橋(PC上部工)上り線工事で行った。

# ○ 特集 / 研究報告 ○

朝比奈川橋は橋長 655.0 m, 有効幅員 16.5 m の PC 7 径間 連続ラーメン箱桁橋であり,内外ケーブルを併用構造で, 内ケーブルは上床版内のみに配置されている。この上床版 内に配置されている内ケーブルにおいて, PC グラウト充 填前と後において,マルチパスアレイレーダにより検証を 実施している(図 - 5)。

実橋においては、PC グラウト充填前と充填後の測定を 実施して,充填の非破壊検査の適用を確認したが,図-5 に示すとおり,明確に判断可能である。



#### 2.2.2 広帯域超音波法

要

#### (1) 概

広帯域超音波法は、コンクリート上面に探触子を配置 し、シースからの反射波を利用して PC ケーブル内のグラ ウト検査を行う方法である。空のシースは充填シースに比 べ、反射波の強度が大きくなる性質を利用する。この方法 は受信波中の低周波成分の強度が相対的に大きくなり、高 周波帯域に比べ鉄筋の影響を受けにくく、鉄筋の影響を少 なくすることができ、より明確に充填状況の確認ができる ものである。

写真 - 4 に広帯域超音波法による測定状況を,写真 - 5 に広帯域超音波法の使用機器を示す。発信器,受信器には φ76 の大型プローブを用いている。



写真 - 4 広帯域超音波法による測定状況

#### (2) 検 証

広帯域超音波法の検証は,前述のマルチパスアレイレー ダ法と同様の,新東名高速道路朝比奈川橋(PC上部工) 上り線の上床版内に配置されている内ケーブルにおいて実



写真 - 5 広帯域超音波法の測定器機

施している。写真 - 6 に内ケーブルの状況を,写真 - 7 に完成写真を示す。



写真 - 6 上床版内の内ケーブル配置状況



写真 - 7 完成した朝比奈川橋(上り線)

検証は、PC グラウトの施工を実施した箇所と、未だ実施していない箇所の比較によって実施しており、また、充填している箇所は、PC グラウトセンサー(MS センサー,振動デバイス)によって充填が確認されている。

その結果の例を,図-6に示すが,充填前の空隙の場合,反射波が強く受信しており,明確に充填前と後を判断できている。



2.2.3 PC グラウト充填検査の導入 以上,述べてきたとおり,充填度を定量的には把握でき ないものの,充填の有無は確実に検査できる精度を確認し た。そこで,旧日本道路公団では,PC グラウトを内ケー ブルへ適用再開するとともに,平成16年から非破壊検査 を導入した。

PC グラウトの非破壊検査は、PC ケーブル延長に10 m 単位の測点を設け、その全測点の30%において本非破壊 検査を適用することとしており、比較的少ない箇所であ る。これは、センサーによるPC グラウト充填確認を義務 づけていること、PC グラウト充填作業において監督員が 立ち会うなどの規準も併用していること、PC ケーブルは 原則として床版内の直線配置としていることなどから、非 破壊検査の検査箇所数を減らしているものである。

## 2.3 新設橋への非破壊検査の導入のまとめ

これまで述べてきたとおり,NEXCOではコンクリート の強度,かぶり,PC グラウト充填において,非破壊検査 を導入している。これらは,すべて施工プロセス検査を実 施したうえで,非破壊検査を追加して実施しているもので あり,検査の省力化を図ることを目的としてはおらず,抑 止効果や検査の精度向上を期待したものとなってる。今 後,非破壊検査の精度が向上されれば,施工プロセスの省 略も期待できるところであるが,残念ながら,その域には 達していないのが現状である。

# 3. 既設橋への非破壊検査の適用

# 3.1 コンクリート構造物への適用

既設コンクリート構造物への非破壊検査の基準化は、未 だされていないのが現状であるが、維持管理を行う現場で は、さまざまな損傷や劣化が生じており、必要の都度、 種々の非破壊検査機器が適用されている。たとえば、赤外 線カメラによるコンクリートの浮きなどの発見、補修・補 強工事の際に RC レーダによる鉄筋位置の確認、PC グラ ウトの充填調査へX線や広帯域超音波法の適用、鉄筋破 断の有無の確認などが実施されているが、機器の仕様や頻 度などを定量的に定めた基準までは至っていない。 以下,各現場で多用されている非破壊検査法について述べる。

## 3.2 赤外線カメラ

赤外線カメラは、物体の放射エネルギーの差を検知して 損傷などを発見するものである。ある温度の物体は、絶対 温度の4乗に比例するエネルギーを放射しており、この放 射エネルギーを温度に換算するカメラを用いることで、物 体の温度を測定するものである。昼夜の温度差によって、 空洞やひび割れがあるコンクリートでは、その箇所で温度 差が生じるため、これを赤外線カメラによって捉えようと するものである。

**写真-8**は,浮きを調査した事例であるが,浮き部分 (赤い部分)が周囲と温度差を生じているところを捉えた 画像であり,損傷や劣化部を視覚的に捉えることが可能で あり,判断が容易なことが特徴である。



写真 - 8 コンクリートの浮きの調査事例

コンクリート表面では、コンクリート自体の放射熱以外 にも、太陽光の反射熱(写真 - 9)があるため、これが大 きな誤差の要因となるとともに、損傷部と健全部で温度差 が生じないと損傷部を捉えることができない。このため、 測定する時期や時間によっては、損傷部を捉えることがで



写真 - 9 太陽光の直射による影響の状況

## きず、誤差が生じてしまうのが現状である。

本方法では、点検(とくにコンクリート片はく落が想定 される箇所の検出)の効率化が期待できるものであるが, 上述した理由により誤差の影響が大きく、本方法のみでの 検査を行うまでには至っていないのが現状であり、本方法 により怪しい箇所を想定し、その周囲を入念にたたき点検 する方法を採用しているのが現状である。

#### 3.3 PC 構造物への適用

NEXCOでは、PC 構造物の健全性把握を重大課題とし て捉えており、PC グラウトの充填状況やPC 鋼材破断検 知の非破壊検査技術の開発・基準化を急いでいる。PC グ ラウトの充填非破壊検査は,前述している広帯域超音波法 であるため、ここでは詳細は省略する。以下、規準化には 至っていないが、実用化の目途の立った PC 鋼材破断検査 技術について述べる。

#### 3.4 PC 鋼材破断の非破壊検査 要

## (1) 概

本技術は、ベルリン工科大学 Prof. Bernd HILLEMEIER 氏へ訪問したのを契機に研究を進めた技術である。ドイツ においても PC グラウト充填不足が社会的な課題としてあ り,写真-10,11,12に示す体育館の屋根の崩落など があり、PC 鋼材破断検査技術が求められていた。



写真 - 10 ドイツでの PC 鋼材破断(崩落時の状況)



写真 - 11 ドイツでの PC 鋼材破断(補修後の状況)

そこで、研究開発されたのは、Magnetic Flux Leakage Methoed (以下, MFL 工法) である。

原理は単純であり、磁化した物体で一連となっている場 合は、端部のみでS極・N極が生じるが、途中で分離して いる場合は、分離箇所でS極・N極が生じる(図-7)。



写真 - 12 崩落した PC 構造の PC 鋼材破断状況(BAM 保管)



図-7 分離箇所での磁場の状況

PC 鋼材を磁化させた場合も同様で、PC 鋼材に破断または 傷があると同様の磁場の乱れが生じる(図-8)ため、磁 場の乱れを検知することで、破断または傷を検知するもで ある。



図-8 破断や損傷部位での磁場の乱れの状況

ベルリン工科大学では、これまで研究・開発を続け、現 在,写真-13に示す磁場発生装置(電磁石),写真-14 に示すセンサー部を用いて床版上部から PC 鋼材破断を検 知する装置を独自に作成し、ドイツのみならず北米でも計 測を行っている(写真 - 15)。

図-9に MFL 工法を用い、床版上面から計測し、画像 処理した事例を示すが、黒く変色した箇所が PC 鋼材が破 断している箇所を示す。

このように、測定や結果が比較的容易で、また、視覚的



写真 - 13 MFL 装置の磁場発生装置



写真 - 14 MFL 装置のセンサー部





にも認識しやすい形で OUTPUT されることから, PC 鋼材 の破断検知には有効な技術と思われる。

## (2) 検

証

本方法は,前述したとおり鋼材が磁性体であることを利 用し,コンクリート表面から磁石により内部の鋼材を着磁 し,着磁後に測定した磁束密度分布波形(磁束密度-鋼材



図-9 計測結果を画像処理した事例

軸方向位置)から,鋼材の破断箇所付近に発生する漏洩磁 束の有無を判定するものである。鋼材が健全である場合, 鋼材の着磁範囲のほぼ両端がそれぞれ S 極・N 極となるた め,図-10に示すように測定範囲でほぼ一定の勾配をも つ磁束密度波形が得られる。一方,鋼材が破断している場 合は,図-11に示すように破断箇所前後の位置で N 極・ S 極の連続した凹凸を持つ波形(S 字波形)が得られるた め,鋼材の劣化状況を直接的に評価可能な非破壊検査技術



図 - 10 健全な PC 鋼材の場合の磁束密度



図 - 11 破断している場合の PC 鋼材の磁束密度

である。

本方法を検証するため,図-12に示す供試体を作成し, そこへ健全な PC 鋼棒,写真-16に示すシースおよび PC 鋼棒を破断させたものを配置し,磁束密度を調査した結果 を図-13に示す。健全な PC 鋼材では,磁束密度が比較 的一定勾配であるの対して,破断している場合は,破断箇 所で磁束密度が大きく変化しており,明確に破断を捉えら れるこを示している。なお,多少の凹凸は帯鉄筋にも着磁 し,この影響が出ているものである。



図 - 12 MFL 工法検証のための供試体



写真 - 16 破断箇所

また,実際に塩害により PC 鋼材が破断している PC 橋 においても適用の検証を実施し,破断の有無を確認できて おり,MFL 工法の有用性を確認している。



図 - 13 MFL 工法の検証結果

## (3) ま と め

本方法は, PC構造物, とくに PC 鋼材の破断の詳細調 査において画期的な非破壊検査手法である。今後, その適 用方法などをまとめたマニュアルなどを整備し, 適用を広 げていく予定である。

# 4. おわりに

現在, NEXCO において適用または開発中の非破壊検査 手法について述べてきたが,非破壊検査は,その定量的な 精度においては,従来の検査手法や破壊検査に比べて,未 だ確立に至っていないのが現状である。欧米では,一つの 非破壊検査に頼ることなく,複数の非破壊検査を適用して 総合的な判定を下すシステムを確立しているところもあ り,それぞれの非破壊検査手法の長所を生かした検査シス テムの構築が必要であると同時に,それぞれの非破壊検査 手法の精度向上が望まれるところである。

今後,NEXCOでは、これらの非破壊検査の精度向上や 非破壊検査を組合せた総合的な非破壊検査システムの構築 を図っていく予定である。

## 参考文献

- 東日本高速道路(㈱・中日本高速道路(㈱・西日本高速道路(㈱): 高速道路資産の長期保全および更新のあり方に関する技術検討 委員会報告書,2014.1.22
- 2) 日本道路公団:コンクリート施工管理要領, 2000.4

【2014年9月29日受付】