PC 鋼材および PC グラウトの非破壊検査手法

解

廣瀬 誠*1・山田 雅彦*2・木下 尚宜*3

PC 構造物の適切な維持管理のうえで, PC 鋼材がグラウトで守られ, 健全に機能しているかどうかを知ることはきわめて重要である。なかには, グラウト充填不足や PC 鋼材の腐食・破断が認められた事例もあり, 今後さらに経年化が進んでいく状況を踏まえれば,新しい非破壊検査技術の構築と普及は急務である。本稿では, PC 鋼材および PC グラウトの非破壊検査手法である,漏洩磁束法, SIBIE 法,広帯域超音波法による調査概要を報告する。

キーワード:非破壊検査,漏洩磁束法,SIBIE法,広帯域超音波法

1. はじめに

既設の PC 構造物においては、グラウトの充填不足、未 充填や PC 鋼材の腐食、破断が散見され(写真 - 1)、かね てからその劣化を非破壊で検知する技術の確立が求められ ている。PC 鋼材は PC 構造物のいわば "命"であり、この PC 鋼材の破断を早期に発見し、策を講じることが、既存 のインフラの安全維持と長期供用にとって重要となること はいうまでもない。

写真 - 1 PC 鋼線の破断

しかし、コンクリート内部の PC 鋼材の腐食,破断の有 無や程度を、コンクリート外観の変状によって把握するこ とは困難であり、構造物に与える影響を考慮すると、高精 度な非破壊検査技術による PC 鋼材の破断などの検出技術 の現場への普及が強く望まれる。

そこで,筆者らは,「PC 鋼材非破壊検査協会¹¹」(2015 年7月設立)において,PC 構造物の鋼材劣化度の検査に 関する技術の普及および技術水準の維持,向上のための教 育および指導を行っている。

具体的には、同協会設立以来、「漏洩磁束法(Magnetic Flux Leakage Method:以下,MFL)によるPC鋼材の破断 調査」の技術講習会(座学と実習)を本年まで毎年開催し、 MFL 講習会のクラスも「基礎編」、「実施編」、「現場編」 の3段階を整備した。また、協会会員限定ではあるものの、 「MFL によるPC鋼材破断非破壊調査マニュアル」を作成 し今後の円滑な運用を目指している。

昨年からは、グラウト充填非破壊調査に関する技術講習 会(座学とデモ)として、「広帯域超音波法(以下,WUT)」、 インパクトエコー法の1種である「SIBIE法」、本年には 「コア応力解放法」による PC 構造物の残存プレストレス 推定の技術の講習会も開催した。今後、これらについても、 マニュアル(協会会員限定)を順次作成する計画である。

本稿では、同協会で取り扱っている上記技術の内,

・MFL による PC 鋼材破断非破壊調査

・SIBIE 法による PC グラウト充填非破壊調査

*1 Makoto HIROSE

INREM 合同会社 PC 鋼材非破壞検查協会 技術部会員

*² Masahiko YAMADA

(株) 富士ピー・エスPC 鋼材非破壊検査協会技術部会員

*3 Takanori KINOSHITA

(株) エッチアンドビーシステム 技術部長 PC鋼材非破壊 検査協会 技術部会員 ・WUT による PC グラウト充填非破壊調査 について、技術の概要を紹介する。

2. MFL による PC 鋼材破断非破壊調査

2.1 MFL の原理

PC 鋼材が強磁性体であることを利用し,図-1のよう にコンクリート表面から永久磁石を内蔵した専用の磁石ユ ニットで内部のPC 鋼材を磁化させる。そののち,コンク リート表面から測定した磁束密度の分布波形(図-2,磁 束密度 - PC 鋼材長手方向位置)から,PC 鋼材破断箇所 付近に発生する磁場の乱れを考察することで,PC 鋼材の 健全性を診断する。シースが鋼製で健全であっても,内部 のPC 鋼材の診断が可能である。

磁 (b)磁束密度の発生状況図 - 1 MFLの原理

2.2 検査機器

検査機器は、検査する PC 鋼材を PC 鋼材長手方向に磁 化するための永久磁石を内蔵した磁石ユニットと、コンク リート表面におけるコンクリート面に垂直な方向成分の磁 束密度を測定する磁気計測ユニットの2つで構成される。 これらの機器の外観を写真 - 2に示す。

磁石ユニットは永久磁石が内蔵されており,底面から 150 mm 離れた位置における磁石磁化方向成分の磁束密度 は約7 mT(参考:地球の地磁気約50 μ T)である。磁気 計測ユニットは,移動距離とコンクリート表面(PC 鋼材) に垂直な磁束密度成分とを測定,記録でき,磁束密度分布 をリアルタイムで表示できる。磁束密度測定範囲は, – 450 μ T ~+ 450 μ T 程度である。なお,検査機器は,PCT 桁,箱桁,床版など調査対象物によって適切なタイプを使 用することができる。また,効率よく作業を進めるための 各種治具も用意されている。

2.3 現地調査事例^{2), 3)}

MFL による PC 鋼材破断非破壊調査は、

- ・PC ポストテンション T 桁橋,
- ・PC ポストテンション箱桁橋,

・PC 単純プレテンション I 桁橋(JIS 桁)

の各主ケーブル,

・PC 連続合成桁 1 次床版ケーブル

といった橋梁のほか,

・PC タンク

やそのほかの PC 構造物についても実績がある。

ここでは, PC ポストテンション箱桁におけるウェブの 着磁状況,磁東密度計測状況を写真-3,写真-4に,T 桁橋の桁中央下フランジ部下面側の着磁状況および計測結 果を写真-5および図-3に示す。

写真-3 箱桁橋ウェブの着磁状況

写真 - 4 箱桁橋ウェブの磁束密度計測状況

写真 - 5 PCT 桁橋桁中央下フランジ部下面側の着磁状況

図 - 3 PCT 桁橋桁中央下フランジ部下面側の計測結果

図-3の計測結果は, G1 ⑤ ケーブルが 1100 mm 付近 で破断している計測結果である。

2.4 具体的な調査手順と診断

調査したい範囲において、あらかじめ PC 鋼材探査など により PC 鋼材配置を把握し、必要なラインをけがいてお く(写真 - 3,4内の白線)。また、検査機器の磁石ユニ ットを動かすライン、磁気計測ユニットで磁束密度を計測 するラインも必要に応じて出しておく(写真 - 3,4内の ピンク線)。

そのうえで,磁石ユニットを動かして着磁を行い,その のち,磁気計測ユニットで磁束密度を計測するが,これら にもいくつかの技法があり,その詳細は前記講習会で指導 している。

そのほか,現場の情報として,調査対象外の磁性体やセ パレータの位置などもメモしておくと,のちのデータ解析, 考察に役に立つ。

現場から持ち帰ったデータ(csv)は、excelで処理できる。 csv データを波形化し、知見や基礎知識を要するが、破断、 腐食箇所の特徴である"S字波形"の有無を診る。S字波 形の疑われる箇所において、そのほかの情報と包括的に照 合することにより、包括的な診断を下す。

3. SIBIE法によるPC グラウト充填非破壊調査

3.1 SIBIE 法の概要

SIBIE 法 $^{4)}$ とは Stack Imaging of spectral amplitudes Based

on Impact Echo の頭文字を取った略称であり、インパクト エコー法により得られる結果(周波数スペクトル)を画像 化し、画像をもとに PC グラウトの充填度を評価する手法 である。

調査は,写真-6に示す衝撃入力装置とセンサー,写 真-7に示す波記録装置を使用して実施する。

写真 - 6 衝撃入力装置と 写真 - 7 波形記録装置 センサー

3.2 SIBIE 法の原理

衝撃入力装置を用いてコンクリート表面に衝撃を加える ことで弾性波を入力し、コンクリート中を伝播する弾性波 の波形を波形記録装置により計測する。計測した波形デー タをパソコン内の解析用ソフトに読み込み、FFT 解析、 SIBIE 解析により解析対象の反射が強い領域をコンター図 化する。得られたコンター図を用いて、グラウトの充填評 価を行う。図 - 4 に SIBIE 法の概要図を示す。コンター 図中の黒丸はシースの位置を示しており、色の濃淡により 弾性波の反射の強さを表している。結果の評価方法は、シ ース位置で反射の強い色の濃い領域が現れた場合、グラウ ト未充填と判定する。衝撃入力した面と反対の側面の左側 に色の濃い領域が現れた場合はグラウト充填と判定する。

図 - 4 SIBIE 法の概要図

3.3 SIBIE 法の調査実績

SIBIE 法の PC グラウト充填調査はこれまで PC ポスト テンション T 桁橋の主ケーブルや横締めケーブル, PC ポ ストテンション箱桁橋の主ケーブル, 架設ケーブルや横締 めケーブルなどに適用した実績がある。なお, そのほかの ポストテンション方式の PC 構造物にも適用が可能である。

3.4 SIBIE 法の調査事例

橋梁架橋後,約25年が経過した3径間 PC ポストテン ションT桁橋の主ケーブルのグラウト充填調査にSIBIE 法を適用した事例⁵⁾を紹介する。グラウトの充填調査位 置は,1桁あたり図-5に示す5ヵ所の位置で実施した。

図 - 6 にグラウト再注入を実施した C2 ケーブルの調査 結果を示す。図 - 6(a)の再注入前の結果では、シース位 置において、色の濃い領域が現れていることから、シース 内の PC グラウトは未充填と判定した。そののち、削孔し て CCD カメラによる調査(写真 - 8)を行った結果、グラ ウトは実際に未充填であることが明らかとなったため、グ ラウトの再注入を実施した。再注入したグラウトが硬化し たのちに、再度 SIBIE 法により確認を行った。図 - 6(b) に示す再注入後の調査結果では、シース付近に反射は現れ ず、入力面と反対の面に反射が表れたことから、シース内 のグラウト充填状態は充填と判定した。

(a) 再注入前(b) 再注入後図 - 6 SIBIE 法による調査結果(C2 ケーブル)

写真 - 8 削孔結果

4. WUT による PC グラウト充填非破壊調査

4.1 WUT の概要

WUT とは Wide-range Ultrasonic Testing の略称で、5~2000 kHz の幅広い帯域の超音波を発信し得られた受信波の中から SN 比の良い帯域の成分波を抽出して解析する手法である。測定機器の外観を写真 -9に示す。

写真 - 9 広帯域超音波測定機器

PC グラウト充填調査における広帯域超音波法は,得られた受信波に含まれるシース反射波のスペクトルに着目する。シース内に空洞が生じていればシース反射波に高周波成分が多く含まれ、シース内が PC グラウトで充填されていればシース反射波に低周波成分が多く含まれる。これより,受信波中のシース反射波起生時刻近傍を短時間フーリエ変換し,得られたスペクトルにより PC グラウトの有無を判定する。解析結果例を図-7に示す。

4.2 WUT の課題

WUT の課題[®] として,以下の3点があげられていた。
① PC グラウト充填率の検知
② 削孔調査の省略
③ 探触子のドライ化
現在,② と③ については検討がなされており,これらの検討結果を以下に示す。

4.3 削孔調査の省略

(1) 削孔調査の概要

調査対象となる PC 構造物は建設時期に幅があり, コン クリートの配合や強度などは一様ではないため, 構造物ご とに得られる測定データの周波数特性は異なってくる。こ れより, WUT では解析の際に用いる周波数フィルタや未 充填と判定する周波数の閾値(以下, 閾値)を構造物ごと

○特集/解説○

に適宜設定している。現状では,この閾値を設定するため, 一部の測点で削孔調査を実施している。

削孔調査は、局所的ではあるが破壊を伴うため、できる 限り実施しないほうが望ましい。そこで、削孔調査を実施 せずに非破壊で構造物ごとの閾値を捉える検討を行った。

(2) 透過波を用いた検討

WUT による PC グラウト充填調査の際, 箱桁では隔壁, T 桁では支間中央付近の主桁において探触子を対向させて 弾性波速度を計測(写真 - 10)している。この時に得ら れる透過波は,測定データの周波数特性と関連があると思 われるため,この透過波を用いて閾値との関連を検討した。

写真 - 10 透過波測定状況

図 - 8 に異なる既設構造物において厚さ 300 mm の隔壁 で測定した透過波を FFT 解析した結果例を示す。

図 - 8より橋梁 A では 200 kHz 程度の帯域でもスペク トルが確認できるのに対して,橋梁 B では 140 kHz 以上の 帯域が減衰している。このように,構造物により透過波か ら得られるスペクトルの分布に差異があることがわかる。

この透過波のピーク周波数やスペクトル面積と, 閾値と の関連を調べたところ,両者に関連があることを示唆する 結果が得られた。これより,透過波から自動的に閾値を判 定するプログラムを試作した。現在このプログラムは試験 運用を行っている段階だが,今後さらにデータを蓄積して 検討を進めることで精度を向上させ,現場での適用を目指 している。

4.4 探触子のドライ化

(1) 探触子のドライ化の概要

現状,WUTで用いる探触子は,計測の際に接触媒質を 用いて探知対象面と探触子を密着させる必要がある。その ため,現場での作業は接触媒質の塗布だけではなく,探査 面のケレンや測定後の清掃が必要となってくる。これらの 工程は,測定作業の3倍以上の時間を要するため,作業の 効率化といった観点から接触媒質を用いない探触子の使用 が望まれていた。そこで,探触子のドライ化を検討した。

写真 - 11 に示すドライ探触子と超音波検査機器を用い て検討を行ったところ,得られる受信波の周波数特性が WUTと異なっていたため新たな探査手法(ドライ超音波 法)の確立を目指して検討した結果を以下に示す。

超音波探査機 ドライ超音波探触子 写真 - 11 ドライ超音波探査機外観

(2) ドライ超音波法の原理

ドライ超音波法では、コンクリート-シース間で生じる 共振波(以下,共振波)の有無に着目する。すなわち、シ ース内に空洞が生じている場合は共振波が確認できるが、 シース内が PC グラウトで充填されている場合は共振波は 確認できない。ドライ超音波をコンクリート表面に押し当 て弾性波を送・受信(写真 - 12)したのち、受信波をウ ェーブレット変換してコンター図を作成する。

写真 - 12 ドライ超音波測定状況

図 - 9, 10 に測定結果例を示す。コンター図に共振波 相当の周波数(共振周波数)において連続した時刻でピー クが確認できれば"空洞"と, 複数の周波数帯域でピーク が確認された場合は"充填"と判定する。

図 - 10 充填時ドライ超音波解析結果例

(3) ドライ超音波法の調査実績および適用範囲

ドライ超音波の PC グラウト充填調査は, PC ポストテ ンション箱桁橋の主ケーブルや PC ポストテンション T 桁 橋主ケーブルおよび床版横締めケーブルについての実績が ある。PC 鋼材は鋼より線, 鋼線や鋼棒に対応している。 また,探査可能深度は現状では 150 mm 程度までである。

(4) ドライ超音波法の調査手順

電磁波レーダを用いて測定対象範囲の鉄筋位置およびシ ースの位置とかぶり深さを測定する。そののち,鉄筋を避 けた位置のシース直上において探触子を押し当てデータを 取得する。このデータは測定器の内部メモリに蓄積され, 解析の際には MicroUSB ケーブルを介してノートパソコン に転送され,専用ソフトでウェーブレット変換されてコン ター図となる。

解析を測定現場で実施し、その場で判定を下すことが可 能である。ただし、構造物により受信波に混入するノイズ 量が異なるため、一部測点を削孔調査して判定基準を見極 めることで測定精度を向上させる運用法もある。

(5) ドライ超音波法とWUTの使い分け

ドライ超音波は資機材が軽量で計測も簡便であるといっ た特徴があるが,探査可能なシースかぶり深さに制限があ る。一方,WUT は適用範囲は広いが計測に時間がかかる。 これらの特徴をいかすために,PC グラウトの1次調査は ドライ超音波法,PC グラウトの不良が多数確認されて詳 細調査を行う場合はWUT,もしくは両手法の併用といっ た運用方法が考えられる。

5. おわりに

経済性や環境負荷軽減などの観点から構造物の延命化は 必至であり、今後さらに経年化が進んでいく構造物に対し て適切な維持管理が必要である。そのためには構造物に対 する非破壊検査技術による状態把握は欠かせない。

本稿では, PC 鋼材破断および PC グラウト充填の非破 壊検査手法である MFL, SIBIE 法, WUT の概要を示し, 実橋での調査事例について紹介した。

これらの手法は現状では、構造物に対して、線または点 データが主体であるが、線データから面データに、点デー タから線データにとデータの次元を大きくすることで、同 様の設計、施工条件に対する比較評価が可能となり、検査 精度の向上が期待できると考えている。

今後は,これら非破壊検査技術の普及と調査結果のデー タベース化および分析,学習による診断精度向上など,改 良に向けた検討も必要と考えられる。

参考文献

- 1) PC 鋼材非破壞検查協会 HP, URL: http://www.hihakai.jp/
- 2) 廣瀬 誠・青木圭一・宮川豊章: " 漏洩磁束法によるポストテンション実橋における PC 鋼材破断調査", プレストレストコンクリート工学会 第23回シンポジウム論文集, pp.467-470, 2014.
- 3) 廣瀬 誠・木村美紀・萩原直樹・豊田雄介:"ポステン橋およ びプレテン橋における漏洩磁束法による PC 鋼材非破壊調査", プレストレストコンクリート工学会 第25回シンポジウム論文 集, pp.269-271, 2016.
- 4) Ohtsu Masayasu and Takeshi Watanabe : "Stack imaging of spectral amplitudes based on impact-echo for flaw detection", NDT & E international, Vol.35, No.3, pp.189-196, 2002.
- 5) 長岡 覚,山田雅彦,大野雅幸,大津政康"既設橋の PC グラウト充填調査 SIBIE 法の実橋への適用 ":プレストレストコンクリート工学会 第26回シンポジウム論文集, pp.635-638, 2017.
- 6) 濱岡弘二・青木圭一・原 幹夫・木下尚宜:"広帯域超音波を 用いた PC グラウトの充填調査"、プレストレストコンクリート、 Vol.56, No.6, pp35-40, 2014.

【2018年8月30日受付】

