鋼材の腐食生成物の変形特性に関する 実験的検討

長岡技術科学大学 技術支援センター 山口貴幸

1. はじめに

塩害劣化した RC 構造物内部の鋼材の腐食量を的確に知 るには、腐食生成物の膨張率、ならびに弾性変形、クリー プを含む変形特性が必要である。しかし、それらは実測困 難であることに加え、たとえば変形特性は、腐食生成物の 膨張によるコンクリートのひび割れや、空隙への腐食生成 物の浸入の影響を含んだみかけの物性であるので、化学組 成から理論的に推定することも困難である。このため、鋼 材腐食による腐食ひび割れの発生・開口の計算では、これ らの物性値は仮定した数値を用いることが多い。

本報告では、従来困難であったコンクリート中の鉄筋腐 食により生じる腐食生成物の変形特性を実験により導出す ることを試した。鉄筋周辺の空隙やひび割れ内への腐食生 成物の浸入の影響を含んだ形で実測することに特徴があ る。外部からの拘束の程度を変化させてコンクリート中の 鉄筋を電食により腐食させ、腐食膨張圧とひび割れ開口 を測定し、計算値と実測値との比較から体積弾性率を同定 した。

なお、本報告はコンクリート工学年次論文集1)に登載さ れた論文を再編したものである。

2. 電食試験による腐食膨張圧測定

2.1 実験概要

実験装置の概要を図-1、試験体の詳細を図-2、試験 体一覧を表 - 1 に示す。塩化ビニル管(VUまたは VP, 呼び径 75 mm) または鋼管(STKM11A, 外径 89 mm) を, 所定の拘束率となる長さに切断して拘束リングとして使用 し、試験体中心に電極を取付けた鉄筋 D13 (SD345) を配 置した。拘束リングとする部分以外は同種の管を連結して 型枠とし、コンクリートを打設・養生後に取り除いて試験 体を作製した。

電食による腐食の進行を促進するため、水に対して3% の塩化ナトリウムを練混ぜ水に添加した。養生終了後、試 験体と銅板を濃度3%の塩化ナトリウム水溶液に浸漬し、 直流電源装置に接続して電食試験を行った。電流密度は 1.30 mA/cm², 目標腐食減量率は 25% とした。継時的な腐 食減量率は、測定した電流から算出した積算電流量と最終 積算電流量との比率と、実験後に取り出した鉄筋の腐食減 量率の関係から算出した。腐食膨張による変形は、拘束リ ング外周に設置したひずみゲージで測定した。

2.2 実験結果

腐食ひび割れが生じた後、腐食膨張圧と拘束リングが内 側から受ける圧力が釣り合うと仮定すると、鉄筋表面で生 じている腐食膨張圧 Pは、下記の式(1)で算出される。

$$P = \frac{E_r \varepsilon_r l_r t_r}{r_s l_s \left(1 - v_r/2\right)} \tag{1}$$

ここで、 ε_r : 拘束リングひずみ、 E_r : 拘束リング弾性係 数, *l*_r: 拘束リング長さ(2本の合計), *t*_r: 拘束リング厚 さ, r_s:鉄筋の半径, l_s:鉄筋電食区間の長さ, v_r:拘束 リングのポアソン比である。

計測された拘束リングひずみから、式(1)で算出される腐

表 - 1 試験体一覧

試験 体名	鉄筋	拘束リング							
		種類	内径 D _r mm	厚さ t _r mm	長さ <i>lr</i> mm	弹性係数 MPa	ポアソ ン比	拘束度*1 N	拘束度 の比 ^{*2}
VU	D13 (SD345) 公称半径 6.35 mm	塩化ビニル管 VU75	83.6	2.7	40×2	3 334	0.38	720 144	1.0
VP		塩化ビニル管 VP75	78.0	5.5	40 × 2	3 334	0.38	1 466 960	2.0
S		鋼管 STKM11A	85.8	1.6	32 × 2	21 000	0.30	2 150 400	3.0

※1: 拘束度=厚さ×長さ×弾性係数

※2: 拘束度の比= VU 試験体の拘束度に対する割合

図 - 3 体積弾性率 K の検討

食膨張圧の実測値を、図-3の実線で示す。いずれの試 験体も、①腐食減量率1%程度までは膨張圧は小さく、 ②その後線形的に増加する段階を経て、③5~10%を超 えると増加しなくなるという傾向がある。①は、鉄筋周囲 にブリーディングによる空隙や微細な腐食ひび割れ(これ らを初期空隙体積と呼ぶ)が存在するためと推察した。 ②では腐食ひび割れが表面に達して膨張圧の増加が拘束リ ングの変形に現れている。③ではひび割れが十分開口して 腐食生成物が流出するため(写真-1)、腐食生成物がひ び割れ内を流動することになり、腐食の進行が膨張圧の上 昇につながらないので、本件の検討対象にはできない。

写真 - 1 腐食生成物の流出(腐食減量率:約35%)

3. 腐食生成物の体積弾性率の同定

電食によって生じる腐食生成物の体積は,式(2)で算出 される。

$$V_{cp} = \beta \gamma \pi \, l_s r_s^2 \tag{2}$$

ここで、 β :腐食減量率、 γ :腐食膨張率である。この V_{cp} は非圧縮状態での腐食生成物体積である。

ここでは腐食生成物を圧縮性を有した固体とみなすと, 圧縮された下での腐食生成物体積 V_{cpp} は、コンクリートが 押し広げられてできた部分の体積と,鉄筋の腐食減量体積, 初期空隙体積の合計であり,式(3)で算出される。

$$V_{cpp} = \pi \, l_s \left[\, (r_s + \Delta r_c)^2 - r_s^2 \, (1 - \beta) \, \right] + V_v \, l_s \tag{3}$$

ここで、V_v:単位長さあたりの初期空隙体積である。

式(2)で算出される腐食生成物体積と,式(3)で算出され る圧縮された腐食生成物体積,および拘束によって腐食生 成物に生じる圧力 Pは,弾性変形,クリープ変形を含む すべての変形成分の総和に対する体積弾性率 Kを用いて 以下の式(4)の関係で表される。

$$P = K \left(1 - \frac{V_{cpp}}{V_{cp}} \right) \tag{4}$$

既往の研究²⁾から,腐食膨張率はy = 1.3とした。初期 空隙体積は, $V_y = 0.266 \text{ mm}^3/\text{mm}$ とすると段階①の挙動 に合った。体積弾性率Kを変化させ,式(4)より算出され る腐食膨張圧の計算値(図 - 3の点線)を実測値と比較 すると,体積弾性率K = 20 MPaとしたときに,段階②の 傾きによく一致した。

4. おわりに

今回,実験的に電食を用いて腐食を模擬したため,得ら れた腐食生成物の物性値は,実環境の場合と異なる可能性 がある。しかし,腐食生成物の膨張によりコンクリートに ひび割れが生じるという現象に本質的には変わりないの で,腐食生成物の物性値として適切な入力値を与えること ができれば,実構造物に生じた腐食ひび割れから腐食量を 推定する際に,今回の手法を適用できる可能性がある。

参考文献

- 山口貴幸,小池耕太郎,下村 匠:コンクリート中における鋼 材の腐食生成物の変形特性に関する実験的検討,コンクリート 工学年次論文集 Vol.40, No.1, pp.933-938, 2018.7
- 鈴木三馨, 福浦尚之, 丸屋 剛:塩害による腐食劣化予測に対 する構造・鋼材腐食連成解析手法の構築, 土木学会論文集 E2, Vol.70, No.3, pp.301-319, 2014.

【2020年1月30日受付】